
Concert Documentation
Release 0.9.0

Matthias Vogelgesang, Tomas Farago

August 16, 2014

Contents

1 User documentation 3
1.1 Installation . 3
1.2 Tutorial . 4
1.3 User manual . 6

2 Developer documentation 17
2.1 Development . 17
2.2 API reference . 23

3 Additional notes 41
3.1 Changelog . 41

Python Module Index 49

i

ii

Concert Documentation, Release 0.9.0

Welcome to the Concert experiment control system documentation. This is the first place to answer all your questions
related to using Concert for an experiment and developing more modules.

You can take a quick guided tutorial to see how the system is effectively used or take a closer in-depth look for special
topics in our user manual.

Contents 1

Concert Documentation, Release 0.9.0

2 Contents

CHAPTER 1

User documentation

1.1 Installation

1.1.1 openSUSE packages

We use the openSUSE Build Service to provide packages for openSUSE 12.2 until openSUSE 13.1. Add the repository
first, e.g.:

$ sudo zypper ar http://download.opensuse.org/repositories/home:/ufo-kit/openSUSE_12.2/ concert-repo

and update and install the packages. Note, that you have to install IPython on your own, if you intend to use the
concert binary for execution:

$ sudo zypper update
$ sudo zypper in python-concert

1.1.2 Install from PyPI

It is recommended to use pip for installing Concert. The fastest way to install it is from PyPI:

$ sudo pip install concert

This will install the latest stable version. If you prefer an earlier stable version, you can fetch a tarball and install with:

$ sudo pip install concert-x.y.z.tar.gz

If you haven’t have pip available, you can extract the tarball and install using the supplied setup.py script:

$ tar xfz concert-x.y.z.tar.gz
$ cd concert-x.y.z
$ sudo python setup.py install

More information on installing Concert using the setup.py script, can be found in the official Python documenta-
tion.

To install the Concert from the current source, follow the instructions given in the developer documentation.

Installing into a virtualenv

It is sometimes a good idea to install third-party Python modules independent of the system installation. This can be
achieved easily using pip and virtualenv. When virtualenv is installed, create a new empty environment and activate

3

https://build.opensuse.org/project/show/home:ufo-kit
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://docs.python.org/2/install/index.html
http://docs.python.org/2/install/index.html
https://pypi.python.org/pypi
http://virtualenv.org

Concert Documentation, Release 0.9.0

that with

$ virtualenv my_new_environment
$. my_new_environment/bin/activate

Now, you can install Concert’s requirements and Concert itself

$ pip install -e path_to_concert/

As long as my_new_environment is active, you can use Concert.

1.2 Tutorial

Concert is primarily a user interface to control devices commonly found at a Synchrotron beamline. This guide will
briefly show you how to use and extend it.

1.2.1 Running a session

In case you don’t have a beamline at hand, you can fetch our sample sessions with the fetch command:

$ concert fetch --repo https://github.com/ufo-kit/concert-examples

Now start the tutorial session:

$ concert start tutorial

You will be greeted by an IPython shell loaded with pre-defined devices, processes and utilities like the pint package
for unit calculation. Although, this package is primarily used for talking to devices, you can also use it to do simple
calculations:

tutorial > a = 9.81 * q.m / q.s**2
tutorial > "Velocity after 5 seconds: {0}".format(5 * q.s * a)

’Velocity after 5 seconds: 49.05 meter / second’

You can get an overview of all defined devices by calling the ddoc() function:

tutorial > ddoc()

--
Name Description Parameters

--
motor None Name Access Unit Description

position rw m Position of the motor
--

...

Now, by typing just the name of a device, you can see it’s currently set parameter values:

tutorial > motor

<concert.devices.motors.dummy.LinearMotor object at 0x9419f0c>
Parameter Value
position 12.729455653 millimeter

To get an overview of all devices’ parameter values, use the dstate() function:

4 Chapter 1. User documentation

https://pint.readthedocs.org/en/latest/

Concert Documentation, Release 0.9.0

tutorial > dstate()

Name Parameters

motor position 99.382 millimeter

...

To change the value of a parameter, you simply assign a new value to it:

tutorial > motor.position = 2 * q.mm

Now, check the position to verify that the motor reached the target position:

tutorial > motor.position
<Quantity(2.0, ’millimeter’)>

Depending on the device, changing a parameter will block as long as the device has not yet reached the final target
state. You can read more about asynchronous execution in the Device control chapter.

Note: A parameter value is always checked for the correct unit and soft limit condition. If you get an error, check
twice that you are using a compatible unit (setting two seconds on a motor position is obviously not) and are within
the allowed parameter range.

pdoc() displays information about currently defined functions and processes and may look like this:

tutorial > pdoc()
--
Name Description
--
save_exposure_scan Run an exposure scan and save the result as a NeXus

compliant file. This requires that libnexus and NexPy
are installed.

--

In case you are interested in the implementation of a function, you can use code_of(). For example:

tutorial > code_of(code_of)
def code_of(func):

"""Show implementation of *func*."""
source = inspect.getsource(func)

try:
...

Note: Because we are actually running an IPython shell, you can _always_ tab-complete objects and attributes. For
example, to change the motor position, you could simply type mo<Tab>.po<Tab> = q.me<Tab>.

1.2.2 Creating a session

First of all, initialize a new session:

$ concert init new-session

and start the default editor with

1.2. Tutorial 5

Concert Documentation, Release 0.9.0

$ concert edit new-session

At the top of the file, you can see a string enclosed in three ". This should changed to something descriptive as it will
be shown each time you start the session.

Adding devices

To create a device suited for your experiment you have to import it first. Concert uses the following packaging scheme
to separate device classes and device implementations: concert.devices.[class].[implementation].
Thus if you want to create a dummy ring from the storage ring class, you would add this line to your session:

from concert.devices.storagerings.dummy import StorageRing

Once imported, you can create the device and give it a name that will be accessible from the command line shell:

from concert.devices.motors.dummy import LinearMotor

ring = StorageRing()
motor = LinearMotor()

Importing other sessions

To specify experiments that share a common set of devices, you can define a base session and import it from each
sub-session:

from base import *

Now everything that was defined will be present when you start up the new session.

1.3 User manual

1.3.1 Command line shell

Concert comes with a command line interface that is launched by typing concert into a shell. Several subcommands
define the action of the tool.

Session commands

The concert tool is run from the command line. Without any arguments, its help is shown:

$ concert
usage: concert [-h] [--version] ...

optional arguments:
-h, --help show this help message and exit
--version show program’s version number and exit

Concert commands:

start Start a session
init Create a new session
mv Move session *source* to *target*

6 Chapter 1. User documentation

Concert Documentation, Release 0.9.0

log Show session logs
show Show available sessions or details of a given *session*
edit Edit a session
rm Remove one or more sessions
fetch Import an existing *session*

The tool is command-driven, that means you call it with a command as its first argument. To read command-specific
help, use:

$ concert [command] -h

Note: When Concert is installed system-wide, a bash completion for the concert tool is installed too. This means,
that commands and options will be completed when pressing the Tab key.

init

Create a new session with the given name:

concert init experiment

If such a session already exists, Concert will warn you.

--force
Create the session even if one already exists with this name.

--imports
List of module names that are added to the import list.

Note: The location of the session files depends on the chosen installation method. If you installed into a vir-
tual environment venv, the files will be stored in /path/to/venv/share/concert. If you have installed
Concert system-wide our without using a virtual environment, it is installed into $XDG_DATA_HOME/concert or
$HOME/.local/share/concert if the former is not set. See the XDG Base Directory Specification for further
information. It is probably a very good idea to put the session directory under version control.

edit

Edit the session file by launching $EDITOR with the associated Python module file:

concert edit session-name

This file can contain any kind of Python code, but you will most likely just add device definitions and import processes
that you want to use in a session. If the session-name doesn’t exist it is created.

log

Show log of session:

concert log session-name

If a session is not given, the log command shows entries from all sessions.

--follow
Instead of showing the past log, update as changes come in. This is the same operation as if the log
file was viewed with tail -f.

1.3. User manual 7

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Concert Documentation, Release 0.9.0

By default, logs are gathered in $XDG_DATA_HOME/concert/concert.log. To change this, you can pass the
--logto and --logfile options to the start command. For example, if you want to output log to stderr use

concert --logto=stderr start experiment

or if you want to get rid of any log data use

concert --logto=file --logfile=/dev/null start experiment

show

Show all available sessions or details of a given session:

concert show [session-name]

mv

Rename a session:

concert mv old-session new-session

cp

Copy a session:

concert cp session session-copy

rm

Remove one or more sessions:

concert rm session-1 session-2

Warning: Be careful. The session file is unlinked from the file system and no backup is made.

fetch

Import an existing session from a Python file:

concert fetch some-session.py

Concert will warn you if you try to import a session with a name that already exists.

--force
Overwrite session if it already exists.

--repo
The URL denotes a Git repository from which the sessions are imported.

Warning: The server certificates are not verified when specifying an HTTPS connection!

8 Chapter 1. User documentation

Concert Documentation, Release 0.9.0

start

Load the session file and launch an IPython shell:

concert start session-name

The quantities package is already loaded and named q.

--logto={stderr, file}
Specify a method for logging events. If this flag is not specified, file is used and assumed to be
$XDG_DATA_HOME/concert/concert.log.

--logfile=<filename>
Specify a log file if --logto is set to file.

--loglevel={debug, info, warning, error, critical}
Specify lowest log level that is logged.

--non-interactive
Run the session as a script and do not launch a shell.

Extensions

Spyder

If Spyder is installed, start the session within the Spyder GUI.

1.3.2 Device control

Parameters

In Concert, a device is a software abstraction for a piece of hardware that can be controlled. Each device consists of
a set of named Parameter instances and device-specific methods. If you know the parameter name, you can get a
reference to the parameter object by using the index operator:

pos_parameter = motor[’position’]

To set and get parameters explicitly , you can use the Parameter.get() and Parameter.set() methods:

pos_parameter.set(1 * q.mm)
print (pos_parameter.get().result())

Both methods will return a Future. A future is a promise that a result will be delivered when asked for. In the mean time
other things can and should happen concurrently. As you can see, to get the result of a future you call its result()
method.

An easier way to set and get parameter values are properties via the dot-name-notation:

motor.position = 1 * q.mm
print (motor.position)

As you can see, accessing parameters this way will always be synchronous and block execution until the value is set
or fetched.

Parameter objects are not only used to communicate with a device but also carry meta data informa-
tion about the parameter. The most important ones are Parameter.name, Parameter.unit and

1.3. User manual 9

Concert Documentation, Release 0.9.0

Parameter.in_hard_limit as well as the doc string describing the parameter. Moreover, parameters can be
queried for access rights using Parameter.is_readable() and Parameter.is_writable().

To get all parameters of an object, you can iterate over the device itself

for param in motor:
print("{0} => {1}".format(param.unit, param.name))

Saving state

In some scenarios you would like to come back to a certain state. Let’s suppose, you have a motor that you want
to check if it moves. If it does, you want it to go back to the same place it came from. For these cases you can use
Device.stash() to store the current state of a device and Device.restore() to go back. Because this is done
in a stacked fashion, you can, for example, model local coordinate pretty easily:

motor.stash()

Do movements aka modify the "local" coordinate system
motor.move(1 * q.mm)

Go back to the original state
motor.restore()

Locking parameters

In case you want to prevent a parameter from being written you can use ParameterValue.lock(). If you
specify a permanent parameter to be True the parameter cannot be unlocked anymore. In case you want to
unlock a parameter you can use ParameterValue.unlock(), to get the state you can check the attribute
ParameterValue.locked. All the parameters within a device can be locked and unlocked at once, for example
one can do:

motor[’position’].lock()
motor.position = 10 * q.mm
Does not work, you will get a LockError
motor.position.locked
True

motor[’position’].unlock()

Works as expected
motor.position = 10 * q.mm

Lock the whole device (all parameters)
motor.lock(permanent=True)

This will not work anymore
motor.unlock()
You will get a LockError

10 Chapter 1. User documentation

Concert Documentation, Release 0.9.0

1.3.3 Process control

Scanning

scan() is used to scan a device parameter and start a feedback action. For instance, to set 10 motor positions between
5 and 12 millimeter and acquire the flow rate of a pump could be written like:

from concert.processes import scan

Assume motor and pump are already defined

def get_flow_rate():
return pump.flow_rate

x, y = scan(motor[’position’], get_flow_rate,
5*q.mm, 12*q.mm, 10).result()

As you can see scan() always yields a future that needs to be resolved when you need the result.

ascan() and dscan() are used to scan multiple parameters in a similar way as SPEC:

from concert.quantities import q
from concert.processes import ascan

def do_something(parameters):
for each parameter in parameters:

print(parameter)

ascan([(motor1[’position’], 0 * q.mm, 25 * q.mm),
(motor2[’position’], -2 * q.cm, 4 * q.cm)],
n_intervals=10, handler=do_something)

Focusing

To adjust the focal plane of a camera, you use focus() like this:

from concert.processes import focus
from concert.cameras.uca import Camera
from concert.motors.dummy import LinearMotor

motor = LinearMotor()
camera = Camera(’mock’)
focus(camera, motor)

1.3.4 Data processing

Coroutines

Coroutines provide a way to process data and yield execution until more data is produced. Generators represent the
source of data and can used as normal iterators, e.g. in a for loop. Coroutines can use the output of a generator to
either process data and output a new result item in a filter fashion or process the data without further results in a sink
fashion.

Coroutines are simple functions that get their input by calling yield on the right side or as an argument. Because they
need to be started in a particular way, it is useful to decorate a coroutine with the coroutine() decorator:

1.3. User manual 11

Concert Documentation, Release 0.9.0

from concert.coroutines.base import coroutine

@coroutine
def printer():

while True:
item = yield
print(item)

This coroutine fetches data items and prints them one by one. Because no data is produced, this coroutine falls into
the sink category. Concert provides some common pre-defined sinks in the sinks module.

Filters hook into the data stream and process the input to produce some output. For example, to generate a stream of
squared input, you would write:

@coroutine
def square(consumer):

while True:
item = yield
consumer.send(item**2)

You can find a variety of pre-defined filters in the filters module.

Connecting data sources with coroutines

In order to connect a generator that yields data to a filter or a sink it is necessary to bootstrap the pipeline by using
the inject() function, which forwards generated data to a coroutine:

from concert.coroutines.base import inject

def generator(n):
for i in range(n):

yield i

Use the output of generator to feed into printer
inject(generator(5), printer())

To fan out a single input stream to multiple consumers, you can use the broadcast() like this:

from concert.coroutines.base import broadcast

source(5, broadcast(printer(),
square(printer())))

High-performance processing

The generators and coroutines yield execution, but if the data production should not be stalled by data consumption
the coroutine should only provide data buffering and delegate the real consumption to a separate thread or process.
The same can be achieved by first buffering the data and then yielding them by a generator. It comes from the fact that
a generator will not produce a new value until the old one has been consumed.

High-performance computing

The ufo module provides classes to process data from an experiment with the UFO data processing framework. The
simplest example could look like this:

12 Chapter 1. User documentation

Concert Documentation, Release 0.9.0

from concert.ext.ufo import InjectProcess
from gi.repository import Ufo
import numpy as np
import scipy.misc

pm = Ufo.PluginManager()
writer = pm.get_task(’writer’)
writer.props.filename = ’foo-%05i.tif’

proc = InjectProcess(writer)

proc.run()
proc.push(scipy.misc.lena())
proc.join()

To save yourself some time, the ufo module provides a wrapper around the raw UfoPluginManager:

from concert.ext.ufo import PluginManager

pm = PluginManager()
writer = pm.get_task(’writer’, filename=’foo-%05i.tif’)

Viewing processed data

Concert has a Matplotlib integration to simplify viewing 1D time series with the PyplotViewer and 2D image data
with the PyplotImageViewer:

from concert.devices.cameras.dummy import Camera
from concert.ext.viewers import PyplotImageViewer

Create a camera and execute something with it in recording state
camera = Camera()
with camera.recording():

Create a viewer and show one frame
viewer = PyplotImageViewer()
viewer.show(camera.grab())

1.3.5 Experiments

Experiments connect data acquisition and processing. They can be run multiple times by the
base.Experiment.run(), they take care of proper file structure and logging output.

Acquisition

Experiments consist of Acquisition objects which encapsulate data generator and consumers for a particular
experiment part (dark fields, radiographs, ...). This way the experiments can be broken up into smaller logical pieces.
A single acquisition object needs to be reproducible in order to repeat an experiment more times, thus we specify
its generator and consumers as callables which return the actual generator or consumer. We need to do this because
generators cannot be “restarted”. An example of an acquisition could look like this:

from concert.coroutines.base import coroutine
from concert.experiments import Acquisition

This is a real generator, num_items is provided somewhere in our session

1.3. User manual 13

Concert Documentation, Release 0.9.0

def produce():
for i in range(num_items):

yield i

A simple data forwarder filter, next_consumer has to be already defined
@coroutine
def consumer():

while True:
item = yield
next_consumer.send(item)

acquisition = Acquisition(’foo’, produce, consumer_callers=[consumer])
Now we can run the acquisition
acquisition()

class concert.experiments.base.Acquisition(name, generator_caller, con-
sumer_callers=None)

An acquisition object connects data generator to consumers.

generator_caller
a callable which returns a generator once called

consumer_callers
a list of callables which return a coroutine once started

Base

Base base.Experiment makes sure a directory for each run is created and logger output goes to that directory.

class concert.experiments.base.Experiment(acquisitions, walker, name_fmt=’scan_{:>04}’)
Experiment base class. An experiment can be run multiple times with the output data and log stored on disk.
You can prepare every run by prepare() and finsh the run by finish(). These methods do nothing by
default. They can be useful e.g. if you need to reinitialize some experiment parts or want to attach some logging
output.

acquisitions
A list of acquisitions this experiment is composed of

walker
A concert.storage.Walker stores experimental data and logging output

name_fmt
Since experiment can be run multiple times each iteration will have a separate entry on the disk. The entry
consists of a name and a number of the current iteration, so the parameter is a formattable string.

acquire()
Acquire data by running the acquisitions. This is the method which implements the data acquisition and
should be overriden if more functionality is required, unlike run().

acquisitions
Acquisitions is a read-only attribute which has to be manipulated by explicit methods provided by this
class.

add(acquisition)
Add acquisition to the acquisition list and make it accessible as attribute, e.g.:

frames = Acquisition(...) experiment.add(frames) # This is possible experiment.frames

finish()
Gets executed after every experiment run.

14 Chapter 1. User documentation

Concert Documentation, Release 0.9.0

get_acquisition(name)
Get acquisition by its name. In case there are more like it, the first one is returned.

prepare()
Gets executed before every experiment run.

remove(acquisition)
Remove acquisition from experiment.

run()
Compute the next iteration and run the acquire().

swap(first, second)
Swap acquisition first with second. If there are more occurences of either of them then the ones which are
found first in the acquisitions list are swapped.

Imaging

Imaging experiments all subclass imaging.Experiment, which makes sure all the acquired frames are written to
disk.

class concert.experiments.imaging.Experiment(acquisitions, walker,
name_fmt=’scan_{:>04}’)

Imaging experiment stores images acquired in acquisitions on disk automatically.

acquire()
Run the experiment. Add writers to acquisitions dynamically.

A basic frame acquisition generator which triggers the camera itself is provided by frames()

concert.experiments.imaging.frames(num_frames, camera, callback=None)
A generator which takes num_frames using camera. callback is called after every taken frame.

There are tomography helper functions which make it easier to define the proper settings for conducting a tomographic
experiment.

concert.experiments.imaging.tomo_angular_step(frame_width)
Get the angular step required for tomography so that every pixel of the frame rotates no more than one pixel per
rotation step. frame_width is frame size in the direction perpendicular to the axis of rotation.

concert.experiments.imaging.tomo_projections_number(frame_width)
Get the minimum number of projections required by a tomographic scan in order to provide enough data points
for every distance from the axis of rotation. The minimum angular step is considered to be needed smaller than
one pixel in the direction perpendicular to the axis of rotation. The number of pixels in this direction is given by
frame_width.

concert.experiments.imaging.tomo_max_speed(frame_width, frame_rate)
Get the maximum rotation speed which introduces motion blur less than one pixel. frame_width is the width of
the frame in the direction perpendicular to the rotation and frame_rate defines the time required for recording
one frame.

Note: frame rate is required instead of exposure time because the exposure time is usually shorter due to
the camera chip readout time. We need to make sure that by the next exposure the sample hasn’t moved more
than one pixel from the previous frame, thus we need to take into account the whole frame taking procedure
(exposure + readout).

Control

Experiment automation based on on-line data analysis.

1.3. User manual 15

Concert Documentation, Release 0.9.0

class concert.experiments.control.ClosedLoop
An abstract feedback loop which acquires data, analyzes it on-line and provides feedback to the experiment. The
data acquisition procedure is done iteratively until the result of some metric converges to a satisfactory value.
Schematically, the class is doing the following in an iterative way:

initialize -> measure -> compare -> OK -> success
^ |
| NOK
| |
-- control <--

compare()
Return True if the metric is satisfied, False otherwise. This is the decision making process.

control()
React on the result of a measurement.

initialize()
Bring the experimental setup to some defined initial (reference) state.

measure()
Conduct a measurement from data acquisition to analysis.

run(self, max_iterations=10)
Run the loop until the metric is satisfied, if we don’t converge in max_iterations then the run is considered
unsuccessful and False is returned, otherwise True.

class concert.experiments.control.DummyLoop
A dummy optimization loop.

16 Chapter 1. User documentation

CHAPTER 2

Developer documentation

2.1 Development

2.1.1 Writing devices

Get the code

Concert is developed using Git on the popular GitHub platform. To clone the repository call:

$ git clone https://github.com/ufo-kit/concert

To get started you are encouraged to install the development dependencies via pip:

$ cd concert
$ pip install -r requirements.txt

After that you can simply install the development source with

$ make install

Run the tests

The core of Concert is tested using Python’s standard library unittest module and nose. To run all tests, you can
call nose directly in the root directory or run make with the check argument

$ make check

Some tests take a lot of time to complete and are marked with the @slow decorator. To skip them during regular
development cycles, you can run

$ make check-fast

You are highly encouraged to add new tests when you are adding a new feature to the core or fixing a known bug.

Basic concepts

The core abstraction of Concert is a Parameter. A parameter has at least a name but most likely also associated
setter and getter callables. Moreover, a parameter can have units and limiters associated with it.

The modules related to device creation are found here

17

http://git-scm.com
http://python.readthedocs.org/en/latest/library/unittest.html#module-unittest
https://nose.readthedocs.org/en/latest/

Concert Documentation, Release 0.9.0

concert/
|-- base.py
‘-- devices

|-- base.py
|-- cameras
| |-- base.py
| ‘-- ...
|-- __init__.py
|-- motors
| |-- base.py
| ‘-- ...
‘-- storagerings

|-- base.py
‘-- ...

Adding a new device

To add a new device to an existing device class (such as motor, pump, monochromator etc.), a new module has to be
added to the corresponding device class package. Inside the new module, the concrete device class must then import
the base class, inherit from it and implement all abstract method stubs.

Let’s assume we want to add a new motor called FancyMotor. We first create a new module called fancy.py in
the concert/devices/motors directory package. In the fancy.py module, we first import the base class

from concert.devices.motors.base import LinearMotor

Our motor will be a linear one, let’s sub-class LinearMotor:

class FancyMotor(LinearMotor):
"""This is a docstring that can be looked up at run-time by the ‘ddoc‘
tool."""

In order to install all required parameters, we have to call the base constructor. Now, all that’s left to do, is implement-
ing the abstract methods that would raise a AccessorNotImplementedError:

def _get_position(self):
the returned value must have units compatible with units set in
the Quantity this getter implements
return self.position

def _set_position(self, position):
position is guaranteed to be in the units set by the respective
Quantity
self.position = position

We guarantee that in setters which implement a Quantity, like the _set_position() above, obtain the
value in the exact same units as they were specified in the respective Quantity they implement. E.g. if
the above _set_position() implemented a quantity with units set in kilometers, the position of the
_set_position() will also be in kilometers. On the other hand the getters do not need to return the exact same
quantity but the value must be compatible, so the above _get_position() could return millimeters and the user
would get the value in kilometers, as defined in the respective Quantity.

Creating a device class

Defining a new device class involves adding a new package to the concert/devices directory and adding a new
base.py class that inherits from Device and defines necessary Parameter and Quantity objects.

18 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

In this exercise, we will add a new pump device class. From an abstract point of view, a pump is characterized and
manipulated in terms of the volumetric flow rate, e.g. how many cubic millimeters per second of a medium is desired.

First, we create a new base.py into the new concert/devices/pumps directory and import everything that we
need:

import quantities as q
from concert.base import Quantity
from concert.devices.base import Device

The Device handles the nitty-gritty details of messaging and parameter handling, so our base pump device must
inherit from it. Furthermore, we have to specify which kind of parameters we want to expose and how we get the
values for the parameters (by tying them to getter and setter callables):

class Pump(Device):

flow_rate = Quantity(q.m**3 / q.s,
lower=0 * q.m**3 / q.s, upper=1 * q.m**3 / q.s,
help="Flow rate of the pump")

def __init__(self):
super(Pump, self).__init__()

The flow_rate parameter can only receive values from zero to one cubic meter per second.

We didn’t specify explicit fget and fset functions, which is why implicit setters and getters called _set_flow_rate and
_get_flow_rate are installed. The real devices then need to implement these. You can however, also specify explicit
setters and getters in order to hook into the get and set process:

class Pump(Device):

def __init__(self):
super(Pump, self).__init__()

def _intercept_get_flow_rate(self):
return self._get_flow_rate() * 10

flow_rate = Parameter(unit=q.m**3 / q.s,
fget=_intercept_get_flow_rate)

Be aware, that in this case you have to list the parameter after the functions that you want to refer to.

In case you want to specify the name of the accessor function yourself and rely on implementation by subclasses, you
have to raise an AccessorNotImplementedError:

class Pump(Device):

...

def _set_flow_rate(self):
raise AccessorNotImplementedError

State machine

A formally defined finite state machine is necessary to ensure and reason about correct behaviour. Concert provides an
implicitly defined, decorator-based state machine. The machine can be used to model devices which support hardware
state reading but also the ones which don’t thanks to the possibility to store the state in the device itself. To use the
state machine you need to declare a State object in the base device class and apply the check() decorator on each

2.1. Development 19

Concert Documentation, Release 0.9.0

method that changes the state of a device. If you are implementing a device which can read the hardware state you
need to define the _get_state method. If you are implementing a device which does not support hardware state
reading then you need to redefine the State in such a way that it has a default value (see the code below) and you
can ensure it is changed by respective methods by using the transition() decorator on such methods, so that you
can keep track of state changes at least in software and comply with transitioning. Examples of such devices could
look as follows:

from concert.base import Quantity, State, transition, check

class BaseMotor(Device):

"""A base motor class."""

state = State()
position = Quantity(unit=q.m)

@check(source=’standby’, target=’moving’)
def start(self):

...

def _start(self):
the actual implementation of starting something
...

class Motor(BaseMotor):

"""A motor with hardware state reading support."""

...

def _start(self):
Implementation communicates with hardware
...

def _get_state(self):
Get the state from the hardware
...

class StatelessMotor(BaseMotor):

"""A motor which doesn’t support state reading from hardware."""

we have to specify a default value since we cannot get it from
hardware
state = State(default=’standby’)

...

@transition(target=’moving’)
def _start(self):

...

The example above explains two devices with the same functionality, however, one supports hardware state reading
and the other does not. When they want to start the state is checked before the method is executed and afterwards.
By checking we mean the current state is checked against the one specified by source and the state after the execution

20 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

is checked against target. The Motor represents a device which supports hardware state reading. That means all
we have to do is to implement _get_state. The StatelessMotor, on the other hand, has no way of determining
the hardware state, thus we need to keep track of it in software. That is achieved by the transition() which sets
the device state after the execution of the decorated function to target. This way the start method can look the
same for both devices.

Besides single state strings you can also add lists of strings and a catch-all * state that matches all states.

There is no explicit error handling implemented for devices which support hardware state reading but it can be easily
modeled by adding error states and reset functions that transition out of them. In case the device does not support state
reading and it runs into an error state all you need to do is to raise a StateError exception, which has a parameter
error_state. The exception is caught by transition() and the error_state parameter is used for setting
the device state.

Parameters In case changing a parameter value causes a state transition, add a transition() to the
Parameter object:

class Motor(Device):

state = State(default=’standby’)

velocity = Parameter(unit=q.m / q.s,
transition(source=’*’, target=’moving’))

2.1.2 Asynchronous execution

Concurrency

Every user defined function or method must be synchronous (blocking). To define a function as asynchronous, use the
async() decorator:

from concert.async import async

@async
def synchronous_function():

long running operation
return 1

Every asynchronous function returns a Future that can be used for explicit synchronization:

future = synchronous_function()
print(future.done())
result = future.result()

Every future that is returned by Concert, has an additional method join that will block until execution finished and
raise the exception that might have been raised in the wrapped function. It will also return the future to gather the
result:

try:
future = synchronous_function().join()
result = future.result()

except:
print("synchronous_function raised an exception")

The asynchronous execution provided by Concert deals with concurrency. If the user wants to employ real parallelism
they should make use of the multiprocessing module which provides functionality not limited by Python’s global
interpreter lock.

2.1. Development 21

Concert Documentation, Release 0.9.0

Synchronization

When using the asynchronous getters and setters of Device and Parameter, processes can not be sure if other
processes or the user manipulate the device during the execution. To lock devices or specific parameters, processes
can use them as context managers:

with motor, pump[’foo’]:
motor.position = 2 * q.mm
pump.foo = 1 * q.s

Inside the with environment, the process has exclusive access to the devices and parameters.

Disable asynchronous execution

Testing and debugging asynchronous code can be difficult at times because the real source of an error is hidden
behind calls from different places. To disable asynchronous execution (but still keeping the illusion of having Futures
returned), you can import DISABLE_ASYNC and set it to True before importing anything else from Concert.

Concert already provides a Nose plugin that adds a --disable-async flag to the test runner which in turn sets
DISABLE_ASYNC to True.

2.1.3 Helpers

Messaging

The backbone of the local messaging system is a dispatching mechanism based on the publish-subscribe analogy.
Once a dispatcher object is created, objects can Dispatcher.subscribe() to messages from other objects and
be notified when other objects Dispatcher.send() a message to the dispatcher:

from concert.helpers import Dispatcher

def handle_message(sender):
print("{0} send me a message".format(sender))

dispatcher = Dispatcher()

obj = {}
dispatcher.subscribe(obj, ’foo’, handle_message)
dispatcher.send(obj, ’foo’)

If not stated otherwise, users should use the global dispatcher for sending and receiving messages.

concert.helpers.dispatcher
A global Dispatcher instance used by all devices.

2.1.4 Contributing

Reporting bugs

Any bugs concerning the Concert core library and script should be reported as an issue on the GitHub issue tracker.

22 Chapter 2. Developer documentation

https://github.com/ufo-kit/concert/issues

Concert Documentation, Release 0.9.0

Fixing bugs or adding features

Bug fixes and new features must be in pull request form. Pull request commits should consist of single logical changes
and bear a clear message respecting common commit message conventions. Before the change is merged eventually it
must be rebased against master.

Bug fixes must come with a unit test that will fail on the bug and pass with the fix. If an issue exists reference it in the
branch name and commit message, e.g. fix-92-remove-foo and “Fix #92: Remove foo”.

New features must follow PEP 8 and must be documented thoroughly.

2.2 API reference

2.2.1 Core objects

Parameters

class concert.base.Parameter(fget=None, fset=None, data=None, check=None, help=None)
A parameter with getter and setter.

Parameters are similar to normal Python properties and can additionally trigger state checks. If fget or fset is not
given, you must implement the accessor functions named _set_name and _get_name:

from concert.base import Parameter, State

class SomeClass(object):

state = State(default=’standby’)

def actual(self):
return ’moving’

param = Parameter(check=check(source=’standby’,
target=[’standby’, ’moving’],
check=actual))

def _set_param(self, value):
pass

def _get_param(self):
pass

When a Parameter is attached to a class, you can modify it by accessing its associated ParameterValue
with a dictionary access:

obj = SomeClass()
print(obj[’param’])

fget is a callable that is called when reading the parameter. fset is called when the parameter is written to.

data is passed to the state check function.

check is a check() that changes states when a value is written to the parameter.

help is a string describing the parameter in more detail.

class concert.base.ParameterValue(instance, parameter)
Value object of a Parameter.

2.2. API reference 23

https://github.com/ufo-kit/concert/pulls
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://www.python.org/dev/peps/pep-0008/

Concert Documentation, Release 0.9.0

get(*args, **kwargs)
Get concrete value of this object.

If wait_on is not None, it must be a future on which this method joins.

lock(permanent=False)
Lock parameter for writing. If permament is True the parameter cannot be unlocked anymore.

locked
Return True if the parameter is locked for writing.

restore()
Restore the last value saved with ParameterValue.stash().

If the parameter can only be read or no value has been saved, this operation does nothing.

set(*args, **kwargs)
Set concrete value on the object.

If wait_on is not None, it must be a future on which this method joins.

stash(*args, **kwargs)
Save the current value internally on a growing stack.

If the parameter is writable the current value is saved on a stack and to be later retrieved with
ParameterValue.restore().

unlock()
Unlock parameter for writing.

wait(value, sleep_time=<Quantity(0.1, ‘second’)>, timeout=None)
Wait until the parameter value is value. sleep_time is the time to sleep between consecutive checks. timeout
specifies the maximum waiting time.

writable
Return True if the parameter is writable.

class concert.base.Quantity(unit, fget=None, fset=None, lower=None, upper=None, data=None,
check=None, help=None)

Bases: concert.base.Parameter

A Parameter associated with a unit.

fget, fset, data, check and help are identical to the Parameter constructor arguments.

unit is a Pint quantity. lower and upper denote soft limits between the Quantity values can lie.

class concert.base.QuantityValue(instance, quantity)
Bases: concert.base.ParameterValue

lock_limits(permanent=False)
Lock limits, if permanent is True the limits cannot be unlocker anymore.

unlock_limits()
Unlock limits.

wait(value, eps=None, sleep_time=<Quantity(0.1, ‘second’)>, timeout=None)
Wait until the parameter value is value. eps is the allowed discrepancy between the actual value and value.
sleep_time is the time to sleep between consecutive checks. timeout specifies the maximum waiting time.

24 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

Collection of parameters

class concert.base.Parameterizable
Collection of parameters.

For each class of type Parameterizable, Parameter can be set as class attributes

class Device(Parameterizable):

def get_something(self):
return ’something’

something = Parameter(get_something)

There is a simple Parameter and a parameter which models a physical quantity Quantity.

A Parameterizable is iterable and returns its parameters of type ParameterValue or its subclasses

for param in device:
print("name={}".format(param.name))

To access a single name parameter object, you can use the [] operator:

param = device[’position’]
print param.is_readable()

If the parameter name does not exist, a ParameterError is raised.

Each parameter value is accessible as a property. If a device has a position it can be read and written with:

param.position = 0 * q.mm
print param.position

install_parameters(params)
Install parameters at run-time.

params is a dictionary mapping parameter names to Parameter objects.

lock(permanent=False)
Lock all the parameters for writing. If permanent is True, the parameters cannot be unlocked anymore.

restore(*args, **kwargs)
Restore all parameters saved with Parameterizable.stash().

stash(*args, **kwargs)
Save all writable parameters that can be restored with Parameterizable.restore().

The values are stored on a stacked, hence subsequent saved states can be restored one by one.

unlock()
Unlock all the parameters for writing.

State machine

class concert.base.State(default=None, fget=None, fset=None, data=None, check=None,
help=None)

Finite state machine.

Use this on a class, to keep some sort of known state. In order to enforce restrictions, you would decorate
methods on the class with check():

2.2. API reference 25

Concert Documentation, Release 0.9.0

class SomeObject(object):

state = State(default=’standby’)

@check(source=’*’, target=’moving’)
def move(self):

pass

In case your device doesn’t provide information on its state you can use the transition() to store the state
in an instance of your device:

@transition(immediate=’moving’, target=’standby’)
def _set_some_param(self, param_value):

when the method starts device state is set to *immediate*
long operation goes here
pass
the state is set to *target* in the end

Accessing the state variable will return the current state value, i.e.:

obj = SomeObject()
assert obj.state == ’standby’

The state cannot be set explicitly by:

obj.state = ’some_state’

but the object needs to provide methods which transition out of states, the same holds for transitioning out of
error states. If the _get_state() method is implemented in the device it is always used to get the state,
otherwise the state is stored in software.

concert.base.check(source=’*’, target=None)
Decorates a method for checking the device state.

source denotes the source state that must be present at the time of invoking the decorated method. target is the
state that the state object will be after successful completion of the method or a list of possible target states.

concert.base.transition(immediate=None, target=None)
Change software state of a device to immediate. After the function execution finishes change the state to target.

Devices

class concert.devices.base.Device
Bases: concert.base.Parameterizable

A Device provides locked access to a real-world device.

It implements the context protocol to provide locking:

with device:
device is locked
device.parameter = 1 * q.m
...

device is unlocked again

26 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

Asynchronous execution

exception concert.async.KillException
Exception that may be thrown during the execution of an async() decorated function. The function may run
cleanup code.

concert.async.async()
A decorator for functions which are executed asynchronously.

concert.async.threaded()
Threaded execution of a function func.

class concert.async.Dispatcher
Core dispatcher

send(sender, message)
Send message from sender.

subscribe(sender, message, handler)
Subscribe to a message sent by sender.

When message is sent by sender, handler is called with sender as the only argument.

unsubscribe(sender, message, handler)
Remove handler from the subscribers to (sender, message).

concert.async.resolve(result)
Return a list of tuples (x, y, ...) from a process that returns a list of futures each returning a single tuple (x, y, ...).

concert.async.wait(futures)
Wait for the list of futures to finish and raise exceptions if happened.

Exceptions

class concert.base.UnitError
Raised when an operation is passed value with an incompatible unit.

class concert.base.LimitError
Raised when an operation is passed a value that exceeds a limit.

class concert.base.ParameterError(parameter)
Raised when a parameter is accessed that does not exists.

class concert.base.AccessorNotImplementedError
Raised when a setter or getter is not implemented.

class concert.base.ReadAccessError(parameter)
Raised when user tries to change a parameter that cannot be written.

class concert.base.WriteAccessError(parameter)
Raised when user tries to read a parameter that cannot be read.

class concert.base.StateError(error_state, msg=None)
Raised in state check functions of devices.

Configuration

concert.config.DISABLE_ASYNC
Disable asynchronous execution by returning a dummy future which is not executed synchronusly.

2.2. API reference 27

Concert Documentation, Release 0.9.0

concert.config.DISABLE_GEVENT
Turn of gevent support and fall back to ThreadPoolExecutor approach.

2.2.2 Sessions

concert.session.utils.code_of(func)
Show implementation of func.

concert.session.utils.ddoc()
Render device documentation.

concert.session.utils.dstate()
Render device state in a table.

concert.session.utils.get_default_table(field_names, widths=None)
Return a prettytable styled for use in the shell. field_names is a list of table header strings.

concert.session.utils.pdoc(hide_blacklisted=True)
Render process documentation.

2.2.3 Networking

Networking package facilitates all network connections, e.g. sockets and Tango.

Socket Connections

class concert.networking.base.SocketConnection(host, port, return_sequence=’n’)
A two-way socket connection. return_sequence is a string appended after every command indicating the end of
it, the default value is a newline (n).

execute(data)
Execute command and wait for response (thread safe).

recv()
Read data from the socket. The result is first stripped from the trailing return sequence characters and then
returned.

send(data)
Send data to the peer. The return sequence characters are appended to the data before it is sent.

class concert.networking.aerotech.Connection(host, port)
Aerotech socket connection.

recv()
Return properly interpreted answer from the controller.

TANGO

Tango devices are interfaced by PyTango, one can obtain the DeviceProxy by the get_tango_device() function.

concert.networking.base.get_tango_device(uri, peer=None)
Get a Tango device by specifying its uri. If peer is given change the tango_host specifying which database to
connect to. Format is host:port as a string.

28 Chapter 2. Developer documentation

http://www.tango-controls.org/
http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html
http://www.tango-controls.org/static/PyTango/latest/doc/html/client/device_proxy.html

Concert Documentation, Release 0.9.0

2.2.4 Helpers

class concert.helpers.Bunch(values)
Encapsulate a list or dictionary to provide attribute-like access.

Common use cases look like this:

d = {’foo’: 123, ’bar’: ’baz’}
b = Bunch(d)
print(b.foo)
>>> 123

l = [’foo’, ’bar’]
b = Bunch(l)
print(b.foo)
>>> ’foo’

class concert.helpers.Command(name, opts)
Command class for the CLI script

Command objects are loaded at run-time and injected into Concert’s command parser.

name denotes the name of the sub-command parser, e.g. “mv” for the MoveCommand. opts must be an argparse-
compatible dictionary of command options.

run(*args, **kwargs)
Run the command

exception concert.helpers.WaitError
Raised on busy waiting timeouts

concert.helpers.busy_wait(condition, sleep_time=<Quantity(0.1, ‘second’)>, timeout=None)
Busy wait until a callable condition returns True. sleep_time is the time to sleep between consecutive checks
of condition. If timeout is given and the condition doesn’t return True within the time specified by it a
WaitingError is raised.

class concert.helpers.expects(*args, **kwargs)
Decorator which determines expected arguments for the function and also check correctness of given arguments.
If input arguments differ from expected ones, exception TypeError will be raised.

For numeric arguments use Numeric class with 2 parameters: dimension of the array and units (optional). E.g.
“Numeric (1)” means function expects one number or “Numeric (2, q.mm)” means function expects expression
like [4,5]*q.mm

Common use case looks like this:

@expects (Camera, LinearMotor, pixelsize = Numeric(2, q.mm)) def foo(camera, motor, pixelsize = None):

pass

concert.helpers.memoize(func)
Memoize the result of func.

Remember the result of func depending on its arguments. Note, that this requires that the function is free from
any side effects, e.g. returns the same value given the same arguments.

2.2. API reference 29

Concert Documentation, Release 0.9.0

2.2.5 Device classes

Cameras

class concert.devices.cameras.base.Camera
Bases: concert.devices.base.Device

Base class for remotely controllable cameras.

frame-rate
Frame rate of acquisition in q.count per time unit.

grab()
Return a NumPy array with data of the current frame.

recording(*args, **kwds)
A context manager for starting and stopping the camera.

In general it is used with the with keyword like this:

with camera.recording():
frame = camera.grab()

start_recording(instance, *args, **kwargs)
Start recording frames.

stop_recording(instance, *args, **kwargs)
Stop recording frames.

stream(*args, **kwargs)
Grab frames continuously and send them to consumer, which is a coroutine.

trigger()
Trigger a frame if possible.

I/O

class concert.devices.io.base.IO
Bases: concert.devices.base.Device

The IO device consists of ports which can be readable, writable or both.

ports
Port IDs used by read_port() and write_port()

read_port(port)
Read a port.

write_port(port, value)
Write a value to the port.

Lightsources

class concert.devices.lightsources.base.LightSource
Bases: concert.devices.base.Device

A base LightSource class.

30 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

Monochromators

class concert.devices.monochromators.base.Monochromator
Bases: concert.devices.base.Device

Monochromator device which is used to filter the beam in order to get a very narrow energy bandwidth.

energy
Monochromatic energy in electron volts.

wavelength
Monochromatic wavelength in meters.

Motors

Linear

Linear motors are characterized by moving along a straight line.

class concert.devices.motors.base.LinearMotor
Bases: concert.devices.motors.base._PositionMixin

One-dimensional linear motor.

position
Position of the motor in length units.

class concert.devices.motors.base.ContinuousLinearMotor
Bases: concert.devices.motors.base.LinearMotor

One-dimensional linear motor with adjustable velocity.

velocity
Current velocity in length per time unit.

Rotational

Rotational motors are characterized by rotating around an axis.

class concert.devices.motors.base.RotationMotor
Bases: concert.devices.motors.base._PositionMixin

One-dimensional rotational motor.

position
Position of the motor in angular units.

class concert.devices.motors.base.ContinuousRotationMotor
Bases: concert.devices.motors.base.RotationMotor

One-dimensional rotational motor with adjustable velocity.

velocity
Current velocity in angle per time unit.

2.2. API reference 31

Concert Documentation, Release 0.9.0

Axes

An axis is a coordinate system axis which can realize either translation or rotation, depending by which type of motor
it is realized.

class concert.devices.positioners.base.Axis(coordinate, motor, direction=1, position=None)
Bases: object

An axis represents a Euclidean axis along which one can translate or around which one can rotate. The
axis coordinate is a string representing the Euclidean axis, i.e. ‘x’ or ‘y’ or ‘z’. Movement is re-
alized by a motor. An additional position argument is necessary for calculatin more complicated mo-
tion types, e.g. rotation around arbitrary point in space. It is the local position with respect to a
concert.devices.positioners.base.Positioner in which it is placed.

get_position()
Get position asynchronously with respect to axis direction.

set_position(position)
Set the position asynchronously with respect to axis direction.

Photodiodes

Photodiodes measure light intensity.

class concert.devices.photodiodes.base.PhotoDiode
Bases: concert.devices.base.Device

Impementation of photo diode with V output signal

Positioners

Positioner is a device consisting of more concert.devices.positioners.base.Axis instances which
make it possible to specify a 3D position and orientation of some object.

class concert.devices.positioners.base.Positioner(axes, position=None)
Bases: concert.devices.base.Device

Combines more motors which move to form a complex motion. axes is a list of Axis instances. position is a
3D vector of coordinates specifying the global position of the positioner.

If a certain coordinate in the positioner is missing, then when we set the position or orientation we can specify
the respective vector position to be zero or numpy.nan.

back(value)
Move back by value.

down(value)
Move down by value.

forward(value)
Move forward by value.

left(value)
Move left by value.

move(position)
Move by specified position.

right(value)
Move right by value.

32 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

rotate(angles)
Rotate by angles.

up(value)
Move up by value.

Imaging Positioners

Imaging positioner is a positioner capable of moving in x and y directions by the given amount of pixels.

class concert.devices.positioners.imaging.Positioner(axes, detector, position=None)
Bases: concert.devices.positioners.base.Positioner

A positioner which takes into account a detector with some pixel size. This way the user can specify the
movement in pixels.

move(position)
Move by specified position which can be given in meters or pixels.

Pumps

class concert.devices.pumps.base.Pump
Bases: concert.devices.base.Device

A pumping device.

start()
Start pumping.

stop()
Stop pumping.

Scales

class concert.devices.scales.base.Scales
Bases: concert.devices.base.Device

Base scales class.

class concert.devices.scales.base.TarableScales
Bases: concert.devices.scales.base.Scales

Scales which can be tared.

tare(*args, **kwargs)
Tare the scales.

Shutters

class concert.devices.shutters.base.Shutter
Bases: concert.devices.base.Device

Shutter device class implementation.

close()
Close the shutter.

2.2. API reference 33

Concert Documentation, Release 0.9.0

open()
Open the shutter.

Storage rings

class concert.devices.storagerings.base.StorageRing
Bases: concert.devices.base.Device

Read-only access to storage ring information.

current
Ring current

energy
Ring energy

lifetime
Ring lifetime in hours

2.2.6 Processes

Scanning

concert.processes.scan(param, feedback, minimum=None, maximum=None, intervals=64, con-
vert=<function <lambda> at 0x7f134d67f848>)

Scan the parameter object in intervals steps between minimum and maximum and call feedback at each step. If
minimum or maximum is None, ParameterValue.lower or ParameterValue.upper is used.

Set convert to a callable that transforms the parameter value prior to setting it.

Generates futures which resolve to tuples containing the set and feedback values (x, y).

concert.processes.ascan(param_list, n_intervals, handler, initial_values=None)
For each of the n_intervals and for each of the (parameter, start, stop) tuples in param_list, calculate a set value
from (stop - start) / n_intervals and set parameter to it:

ascan([(motor[’position’], 0 * q.mm, 2 * q.mm)], 5, handler)

When all devices have reached the set point handler is called with a list of the parameters as its first argument.

If initial_values is given, it must be a list with the same length as devices containing start values from where
each device is scanned.

concert.processes.dscan(parameter_list, n_intervals, handler)
For each of the n_intervals and for each of the (parameter, start, stop) tuples in param_list, calculate a set value
from (stop - start) / n_intervals and set parameter.

concert.processes.scan_param_feedback(scan_param, feedback_param, minimum=None,
maximum=None, intervals=64, convert=<function
<lambda> at 0x7f134d67f938>)

Convenience function to scan one parameter and measure another.

Scan the scan_param object and measure feedback_param at each of the intervals steps between minimum and
maximum.

Returns a tuple (x, y) with scanned parameter and measured values.

34 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

Focusing

concert.processes.focus()

Alignment

concert.processes.align_rotation_axis(*args, **kwargs)

concert.processes.center_to_beam(*args, **kwargs)
Tries to center the camera cam to the beam by moving with the motors xmotor and zmotor. It starts by searching
the beam inside the search-area defined by xborder and zborder. Argument pixelsize is needed to convert
pixelcoordinates into realworld-coordinates of the motors. Exceptions are raised on fail.

Optional arguments xstep, zstep, thres, tolerance and max_iterations are passed to the functions ‘find_beam(...)’
and ‘center2beam(...)’.

concert.processes.drift_to_beam(cam, xmotor, zmotor, pixelsize, tolerance=5,
max_iterations=100)

Moves the camera cam with motors xmotor and zmotor until the center of mass is nearer than tolerance-pixels
to the center of the frame or max_iterations is reached.

To convert pixelcoordinates to realworld-coordinates of the motors the pixelsize (scalar or 2-element array-like,
e.g. [4*q.um, 5*q.um]) is needed.

concert.processes.find_beam()

2.2.7 Coroutines

concert.coroutines.base.broadcast(*consumers)
Forward data to all consumers.

concert.coroutines.base.coroutine(func)
Start a coroutine automatically without the need to call next() or send(None) first.

concert.coroutines.base.inject(generator, consumer)
Let a generator produce a value and forward it to consumer.

Sinks

class concert.coroutines.sinks.Accumulate
Accumulate items in a list.

class concert.coroutines.sinks.Result
The object is callable and when called it becomes a coroutine which accepts items and stores them in a variable
which allows the user to obtain the last stored item at any time point.

concert.coroutines.sinks.null()
A black-hole.

Filters

class concert.coroutines.filters.PickSlice(index)
Pick a slice from a 3D volume.

2.2. API reference 35

Concert Documentation, Release 0.9.0

class concert.coroutines.filters.Timer
Timer object measures execution times of coroutine-based workflows. It measures the time from when this
object receives data until all the subsequent stages finish, e.g.:

acquire(timer(process()))

would measure only the time of process, no matter how complicated it is and whether it invokes subsequent
coroutines. Everything what happens in process is taken into account. This timer does not treat asynchronous
operations in a special way, i.e. if you use it like this:

def long_but_async_operation():
@async
def process(data):

long_op(data)

while True:
item = yield
process(item)

timer(long_but_async_operation())

the time you truly measure is only the time to forward the data to long_but_async_operation and the time to
start the asynchronous operation (e.g. spawning a thread).

duration
All iterations summed up.

mean
Mean iteration execution time.

reset()
Reset the timer.

concert.coroutines.filters.absorptivity(consumer)
Get the absorptivity from a flat corrected stream of images. The intensity after the object is defined as 𝐼 =
𝐼0 · 𝑒−𝜇𝑡 and we extract the absorptivity 𝜇𝑡 from the stream of flat corrected images 𝐼/𝐼0.

concert.coroutines.filters.average_images(consumer)
Average images as they come and send them to consumer.

concert.coroutines.filters.backproject(center, consumer)
Filtered backprojection filter. The filter receives a sinogram, filters it and based on center of rotation it backpro-
jects it. The slice is then sent to consumer.

concert.coroutines.filters.downsize(consumer, x_slice=None, y_slice=None, z_slice=None)
Downsize images in 3D and send them to consumer. Every argument is either a tuple (start, stop, step). x_slice
operates on image width, y_slice on its height and z_slice on the incoming images, i.e. it creates the third time
dimension.

Note: the start index is included in the data and the stop index is excluded.

concert.coroutines.filters.flat_correct(flat, consumer, dark=None)
Flat correcting corounte, which takes a flat field, a dark field (if given), calculates a flat corrected radiograph
and forwards it to consumer.

concert.coroutines.filters.queue(consumer)
Store the incoming data in a queue and dispatch in a separate thread which prevents the stalling on the “main”
data stream.

concert.coroutines.filters.sinograms(num_radiographs, consumer, sino-
grams_volume=None)

Convert num_radiographs into sinograms and send them to consumer. The sinograms are sent every time a

36 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

new radiograph arrives. If there is more than num_radiographs radiographs, the sinograms are rewritten in a
ring-buffer fashion. If sinograms_volume is given, it must be a 3D array and it is used to store the sinograms.

concert.coroutines.filters.stall(consumer, per_shot=10, flush_at=None)
Send items once enough is collected. Collect per_shot items and send them to consumer. The incoming data
might represent a collection of some kind. If the last item is supposed to be sent regardless the current number
of collected items, use flush_at by which you specify the collection size and every time the current item counter
% flush_at == 0 the item is sent.

2.2.8 Optimization

Optimization is a procedure to iteratively find the best possible match to

𝑦 = 𝑓(𝑥).

This module provides execution routines and algorithms for optimization.

concert.optimization.bfgs(function, x_0, **kwargs)
Broyde-Fletcher-Goldfarb-Shanno (BFGS) algorithm from scipy.optimize.fmin_bfgs(). Please refer
to the scipy function for additional arguments information.

concert.optimization.down_hill(function, x_0, **kwargs)
Downhill simplex algorithm from scipy.optimize.fmin(). Please refer to the scipy function for addi-
tional arguments information.

concert.optimization.halver(function, x_0, initial_step=None, epsilon=None,
max_iterations=100)

Halving the interval, evaluate function based on param. Use initial_step, epsilon precision and max_iterations.

concert.optimization.least_squares(function, x_0, **kwargs)
Least squares algorithm from scipy.optimize.leastsq(). Please refer to the scipy function for addi-
tional arguments information.

concert.optimization.nonlinear_conjugate(function, x_0, **kwargs)
Nonlinear conjugate gradient algorithm from scipy.optimize.fmin_cg(). Please refer to the scipy
function for additional arguments information.

concert.optimization.optimize(*args, **kwargs)
Optimize y = function (x), where x_0 is the initial guess. algorithm is the optimization algorithm to be used:

algorithm(x_0, *alg_args, **alg_kwargs)

consumer receives all the (x, y) values as they are obtained.

concert.optimization.optimize_parameter(parameter, feedback, x_0, algorithm, alg_args=(),
alg_kwargs=None, consumer=None)

Optimize parameter and use the feedback (a callable) as a result. Other arguments are the same as by
optimize(). The function to be optimized is determined as follows:

parameter.set(x)
y = feedback()

consumer is the same as by optimize().

concert.optimization.powell(function, x_0, **kwargs)
Powell’s algorithm from scipy.optimize.fmin_powell(). Please refer to the scipy function for addi-
tional arguments information.

2.2. API reference 37

Concert Documentation, Release 0.9.0

2.2.9 Extensions

Concert integrates third-party software in the ext package. Because the dependencies of these modules are not listed
as Concert dependencies, you have to make sure, that the appropriate libraries and modules are installed.

UFO Processing

Base objects

class concert.ext.ufo.PluginManager
Plugin manager that initializes new tasks.

get_task(name, **kwargs)
Create a new task from plugin name and initialize with kwargs.

class concert.ext.ufo.InjectProcess(graph, get_output=False)
Process to inject NumPy data into a UFO processing graph.

InjectProcess can also be used as a context manager, in which case it will call start() on entering the
manager and wait() on exiting it.

graph must either be a Ufo.TaskGraph or a Ufo.TaskNode object. If it is a graph the input tasks will be connected
to the roots, otherwise a new graph will be created.

insert(array, node=None, index=0)
Insert array into the node‘s index input.

Note: array must be a NumPy compatible array.

start()
Run the processing in a new thread.

Use push() to insert data into the processing chaing and wait() to wait until processing has finished.

wait()
Wait until processing has finished.

Coroutines

class concert.ext.ufo.Backproject(axis_pos=None)
Bases: concert.ext.ufo.InjectProcess

Coroutine to reconstruct slices from sinograms using filtered backprojection.

axis_pos specifies the center of rotation in pixels within the sinogram. If not specified, the center of the image
is assumed to be the center of rotation.

Viewers

Opening images in external programs.

class concert.ext.viewers.PyplotImageViewer(imshow_kwargs=None, colorbar=True, ti-
tle=’‘)

Dynamic image viewer using matplotlib.

38 Chapter 2. Developer documentation

Concert Documentation, Release 0.9.0

show(item, force=False)
show item into the redrawing queue. The item is truly inserted only if the queue is empty in order to
guarantee that the newest image is drawn or if the force is True.

class concert.ext.viewers.PyplotViewer(style=’o’, plot_kwargs=None, autoscale=True, ti-
tle=’‘)

Dynamic plot viewer using matplotlib.

style
One of matplotlib’s linestyle format strings

plt_kwargs
Keyword arguments accepted by matplotlib’s plot()

autoscale
If True, the axes limits will be expanded as needed by the new data, otherwise the user needs to rescale the
axes

clear()
Clear the plotted data.

plot(x, y=None, force=False)
Plot x and y, if y is None and x is a scalar the real y is given by x and x is the current iteration of the plotting
command, if x is an iterable then it is interpreted as y data array and x is a span [0, len(x)]. If both x and
y are given, they are plotted as they are. If force is True the plotting is guaranteed, otherwise it might be
skipped for the sake of plotting speed.

Note: if x is not given, the iteration starts at 0.

class concert.ext.viewers.PyplotViewerBase(view_function, blit=False)
A base class for data viewer which sends commands to a matplotlib updater which runs in a separate process.

view_function
The function which updates the figure based on the changed data. Its nomenclature has to be:

foo(data, force=False)

Where force determines whether the redrawing must be done or not. If it is False, the redrawing takes
place if the data queue contains only the current data item. This prevents the actual drawer from being
overwhelmed by the amount of incoming data.

blit
True if faster redrawing based on canvas blitting should be used.

pause()
Pause, no images are dispayed but image commands work.

resume()
Resume the viewer.

terminate()
Close all communication and terminate child process.

concert.ext.viewers.imagej(*args, **kwargs)
Open image in ImageJ found by path. writer specifies the written image file type.

2.2. API reference 39

Concert Documentation, Release 0.9.0

40 Chapter 2. Developer documentation

CHAPTER 3

Additional notes

3.1 Changelog

Here you can see the full list of changes between each Concert release.

3.1.1 Version 0.9

Released on August 15th 2014.

Improvements

• The state machine mechanism is not special anymore but directly inherits from Parameter.

• Added walker mechanism to write sequence data in hierarchical structures such as directories or HDF5 files.

• The long-standing gevent integration with IPython is finished at least for IPython >= 2.0.

• Added @expects decorator to annotate what a function can receive.

• Added async.resolve() to get result of future lists.

• Added accumulate sink and timer coroutines.

• Added Timestamp class for PCO cameras that decodes the BCD timestamp embedded in a frame.

• Added optional wait_on to getter and setter of a ParameterValue.

• We now raise an exception in if a uca frame is not available.

• Experiments have now hooks for preparation and cleanup tasks.

• Added basic control loop classes.

• Add binary signal device class.

API breaks

• scan yields futures instead of returning a list

• Moved specific pco cameras to concert.devices.cameras.pco.

• Moved write_images to concert.storage

• Removed base.MultiContext and base.Process

41

Concert Documentation, Release 0.9.0

Fixes

• #198, #254, #271, #277, #280, #286, #293

• The pint dependency had to be raised to 0.5.2 in order to compute sums of quantities.

3.1.2 Version 0.8

Released on April 16th 2014.

Improvements

• concert log can now --follow the current operation.

• Soft limits and parameters can be locked both temporarily and permanently.

• Added new @quantity decorator for simple cases.

• The concert‘ binary can now be started without a session.

• Added cross-correlation tomographic axis finding.

• Added frame consumer to align_rotation_axis.

• Simplify file camera and allow resetting it

• Added ports property to the base IO device.

• Added Photodiode base device class.

• Added Fiber-Lite halogen lightsource.

• Added LEDs connected within the wago.

• Added stream coroutine to cameras.

• Added EdmundOptics photodiode.

• Added PCO.4000 camera.

• Added Wago input/output device.

API breaks

• Raise CameraError instead of ValueError

• Change Pco’s freerun to stream

Fixes

• Fix FileCamera pixel units in grab

• Import GLib.GError correctly

• Make recording context exception-safe

• Fix quantity problem with recent Pint versions

• #200, #203, #206, #209, #228, #230, #245

42 Chapter 3. Additional notes

Concert Documentation, Release 0.9.0

3.1.3 Version 0.7

Released on February 17th 2014.

Improvements

• Added beam finding and centering

• threaded decorator uses daemonic threads

• Added downsize, queue, stall, PickSlice to coroutine filters

• Added reconstruction of the whole volume using UFO Framework

• Documentation was restructured significantly (split to usage/API)

• Added tomography helper functions

• Crio motor support continuous rotation

• PyplotViewer can be configured for faster drawing capabilities using blit

• Added dummy Scales

• Tests cover all devices (at least try to instantiate them)

• Added pixel units, q.pixel (shorthand q.px)

• Changed prompt color to terminal default

• Added Positioner device

• Added Detector device

API Breaks

• Finite state machine was reworked significantly

• Motors were cleaned from mixins and hard-limit was incorporated into them

• recording() context was added to cameras

• backprojector coroutine filter was significantly simplified

• average_images arguments changed

• Experiments were completely restructured based on usage of Acquisition

• PyplotViewer plotting signature changed

• Remove leftover beam line specific shutters

• Many getters/setters were replaced by properties, especially in the concert.ext.viewers module

• Appropriate get_ set_ functions were replaced by non-prefixed ones

Fixes

• #118, #128, #132, #133, #139, #148, #149, #150, #157, #159, #165, #169, #173, #174, #175, #176, #178, #179,
#181, #184, #189, #192

3.1. Changelog 43

Concert Documentation, Release 0.9.0

3.1.4 Version 0.6

Released on December 10th 2013.

Improvements

• Concert now comes with an experimental gevent backend that will eventually replace the thread pool executor
based asynchronous infrastructure.

• Each device can now have an explicit State object and @transition applied to function which will change
the state depending on the successful outcome of the decorated function.

• 1D data plotting is implemented as PyplotCurveViewer.

• The concert binary now knows the cp command to make a copy of a session. The start command can
receive a log level and with the --non-interactive option run a session as a script.

• Devices and parameters can store their current parameter values with stash and restore them later with
restore.

• Changed the IPython prompt.

• Added the NewPort 74000 Monochromator.

• Provide a require function that will scream when the required Concert version is not installed.

API breaks

• Motor is renamed to LinearMotor for all devices.

• Parameter objects are now declared at class-level instead of at run-time within the class constructor.

• concert.storage.create_folder renamed to concert.storage.create_directory

• concert.ext.viewers.PyplotViewer substituted by 1D and 2D viewers
concert.ext.viewers.PyplotCurveViewer and concert.ext.viewers.PyplotImageViewer

• To wait on a Future you have to call .join instead of .wait.

• Coroutine functions and decorators moved to concert.coroutines[.base], asynchronous functions and
decorators moved to concert.async.

• Removed is_async

• Configuration moved to concert.config

• Method names of concert.ext.ufo.InjectProcess changed.

Fixes

• #168, #166, #152, #147, #158, #150, #157, #95, #138

• Many more concerning the camera implementation.

3.1.5 Version 0.5

Released on October 31st 2013.

44 Chapter 3. Additional notes

Concert Documentation, Release 0.9.0

Improvements

• Python 3 is supported and can be tested with tox.

• Most imports are delayed in the concert binary to reduce startup time.

• We do not depend on Logbook anymore but use Python’s logging module.

• Experiments can now be modelled with the concert.experiments module.

• concert.ext.viewers.PyplotViewer can be used to show 2D image data.

• Spyder command plugin is now available. That means if you have Spyder installed you can control Concert
from an IDE instead of from IPython.

• Tests were restructured for easier access.

API breaks

• concert.connections package moved to concert.networking module

• Renamed concert.helpers.multicast to broadcast to reflect its true purpose.

• Session helpers such as dstate and ddoc have been moved to concert.session.utils.

• Frames grabbed with the libuca devices will return a copy instead of the same buffer.

Fixes:

• #106, #113 and many more which did not deserve an issue number.

3.1.6 Version 0.4

Released on October 7th 2013.

Improvements

• Tests and rotation axis alignment is faster now.

• Soft limits were added to the parameter (accessible with .lower and .upper)

• Cleaner inet connection implemention.

• Base pumps and scales were added.

• Concert no longer depends on testfixtures for running tests.

• Started work on flexible data processing schemes for light computation based on a coroutine approach.

• Integrated tifffile.py in case libtiff is not available.

• concert mv renames sessions.

• @threaded decorator can be used to run a function in its own thread.

• Scanner parameters can now be set in the constructor.

• Parameters can now be locked independently of the parent device. However, if done so, no one else can lock the
device.

• Add code_of function to show the source of a function.

• Introduced coroutine based data processing facility.

3.1. Changelog 45

Concert Documentation, Release 0.9.0

API breaks

• Renamed to_steps to to_device and do not drop units

• camera.grab returns None if no data is available

• uca.Camera exposes the wrapped GObject camera as an attribute called uca instead of camera.

• minimum, maximum and intervals are now longer implemented as Parameter objects of Scanner but
simple attributes.

• asynchronous module content has been moved to helpers

• Removed Scanner class in favor of scan function.

Fixes:

• Integration with all IPython releases works again.

• runtests.py returns 0 on success.

• #19, #55, #71, #78, #79

3.1.7 Version 0.3

Released on August 19th 2013.

Note: This release breaks Python 2.6 compatibility!

• Calibration classes moved to concert.devices.calibration

• Remove concert.processes.focus and reorganize concert.optimization package, the focusing
can be implemented by Maximizer with a proper feedback.

• Add --repo parameter to the fetch command. With this flag, session files version controlled with Git can
be imported.

• Use pint instead of quantities. pint is faster for smaller Numpy arrays, stricter and does not depend on Numpy.

• Things can now run serialized if concert.asynchronous.DISABLE is set to True.

• Restructured tests into separate directories.

• Fix PDF generation of the docs.

• Fix problem with IPython version >= 0.10.

3.1.8 Version 0.2

Released on July 14th 2013.

• Move third-party code to concert.ext. For example get_tomo_scan_result must be imported from
concert.ext.nexus.

• Adds concert fetch to pull session files from remote locations.

• Code cleanup

46 Chapter 3. Additional notes

Concert Documentation, Release 0.9.0

3.1.9 Version 0.1.1

Bug fix release, released on May 25th 2013

• Fixes Python 3 support.

• Monochromator fix.

3.1.10 Version 0.1

First public release.

3.1. Changelog 47

Concert Documentation, Release 0.9.0

48 Chapter 3. Additional notes

Python Module Index

c
concert.async, 27
concert.config, 27
concert.coroutines.base, 35
concert.coroutines.filters, 35
concert.coroutines.sinks, 35
concert.experiments.control, 15
concert.ext.viewers, 38
concert.helpers, 29
concert.optimization, 37
concert.session.utils, 28

49

	User documentation
	Installation
	Tutorial
	User manual

	Developer documentation
	Development
	API reference

	Additional notes
	Changelog

	Python Module Index

