

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Concert 0.8.0 documentation

Concert

Welcome to the Concert experiment control system documentation. This is the
first place to answer all your questions related to using Concert for an
experiment and developing more modules.

You can take a quick guided tutorial to see how the system is
effectively used or take a closer in-depth look for special topics in our
user manual.

User documentation

	Installation
	openSUSE packages

	Install from PyPI

	Tutorial
	Running a session

	Creating a session

	User manual
	Command line shell

	Device control

	Process control

	Data processing

	Experiments

Developer documentation

	Development
	Writing devices

	Asynchronous execution

	Helpers

	Contributing

	API reference
	Core objects

	Sessions

	Networking

	Helpers

	Device classes

	Processes

	Coroutines

	Optimization

	Extensions

Additional notes

	Changelog
	Version 0.8

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3

	Version 0.2

	Version 0.1.1

	Version 0.1

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

Installation

openSUSE packages

We use the openSUSE Build Service [https://build.opensuse.org/project/show/home:ufo-kit] to provide packages for openSUSE 12.2
until openSUSE 13.1. Add the repository first, e.g.:

$ sudo zypper ar http://download.opensuse.org/repositories/home:/ufo-kit/openSUSE_12.2/ concert-repo

and update and install the packages. Note, that you have to install IPython on
your own, if you intend to use the concert binary for execution:

$ sudo zypper update
$ sudo zypper in python-concert

Install from PyPI

It is recommended to use pip [https://pypi.python.org/pypi] for installing Concert. The fastest way to install
it is from PyPI:

$ sudo pip install concert

This will install the latest stable version. If you prefer an earlier stable
version, you can fetch a tarball and install with:

$ sudo pip install concert-x.y.z.tar.gz

If you haven’t have pip [https://pypi.python.org/pypi] available, you can extract the tarball and install using
the supplied setup.py script:

$ tar xfz concert-x.y.z.tar.gz
$ cd concert-x.y.z
$ sudo python setup.py install

More information on installing Concert using the setup.py script, can be
found in the official Python documentation [http://docs.python.org/2/install/index.html].

To install the Concert from the current source, follow the instructions given in
the developer documentation.

Installing into a virtualenv

It is sometimes a good idea to install third-party Python modules independent of
the system installation. This can be achieved easily using pip [https://pypi.python.org/pypi] and virtualenv [http://virtualenv.org].
When virtualenv is installed, create a new empty environment and activate that
with

$ virtualenv my_new_environment
$. my_new_environment/bin/activate

Now, you can install Concert’s requirements and Concert itself

$ pip install -e path_to_concert/

As long as my_new_environment is active, you can use Concert.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

Tutorial

Concert is primarily a user interface to control devices commonly found at a
Synchrotron beamline. This guide will briefly show you how to use and extend it.

Running a session

In case you don’t have a beamline at hand, you can fetch our sample sessions
with the fetch command:

$ concert fetch --repo https://github.com/ufo-kit/concert-examples

Now start the tutorial session:

$ concert start tutorial

You will be greeted by an IPython shell loaded with pre-defined devices,
processes and utilities like the pint [https://pint.readthedocs.org/en/latest/] package for unit calculation. Although,
this package is primarily used for talking to devices, you can also use it to do
simple calculations:

tutorial > a = 9.81 * q.m / q.s**2
tutorial > "Velocity after 5 seconds: {0}".format(5 * q.s * a)

'Velocity after 5 seconds: 49.05 meter / second'

You can get an overview of all defined devices by calling the
ddoc() function:

tutorial > ddoc()

--
 Name Description Parameters
--
 motor None Name Access Unit Description
 position rw m Position of the motor
--
 ...

Now, by typing just the name of a device, you can see it’s currently set parameter
values:

tutorial > motor

<concert.devices.motors.dummy.LinearMotor object at 0x9419f0c>
 Parameter Value
 position 12.729455653 millimeter

To get an overview of all devices’ parameter values, use the dstate()
function:

tutorial > dstate()

 Name Parameters

 motor position 99.382 millimeter

 ...

To change the value of a parameter, you simply assign a new value to it:

tutorial > motor.position = 2 * q.mm

Now, check the position to verify that the motor reached the target position:

tutorial > motor.position
<Quantity(2.0, 'millimeter')>

Depending on the device, changing a parameter will block as long as the device
has not yet reached the final target state. You can read more about asynchronous
execution in the Device control chapter.

Note

A parameter value is always checked for the correct unit and soft limit
condition. If you get an error, check twice that you are using a compatible
unit (setting two seconds on a motor position is obviously not) and are
within the allowed parameter range.

pdoc() displays information about currently defined functions and
processes and may look like this:

tutorial > pdoc()
--
Name Description
--
save_exposure_scan Run an exposure scan and save the result as a NeXus
 compliant file. This requires that libnexus and NexPy
 are installed.
--

In case you are interested in the implementation of a function, you can use
code_of(). For example:

tutorial > code_of(code_of)
def code_of(func):
 """Show implementation of *func*."""
 source = inspect.getsource(func)

 try:
 ...

Note

Because we are actually running an IPython shell, you can _always_
tab-complete objects and attributes. For example, to change the motor
position, you could simply type mo<Tab>.po<Tab> = q.me<Tab>.

Creating a session

First of all, initialize a new session:

$ concert init new-session

and start the default editor with

$ concert edit new-session

At the top of the file, you can see a string enclosed in three ". This
should changed to something descriptive as it will be shown each time you start
the session.

Adding devices

To create a device suited for your experiment you have to import it first.
Concert uses the following packaging scheme to separate device classes and
device implementations: concert.devices.[class].[implementation]. Thus if
you want to create a dummy ring from the storage ring class, you would add this
line to your session:

from concert.devices.storagerings.dummy import StorageRing

Once imported, you can create the device and give it a name that will be
accessible from the command line shell:

from concert.devices.motors.dummy import LinearMotor

ring = StorageRing()
motor = LinearMotor()

Importing other sessions

To specify experiments that share a common set of devices, you can define a base
session and import it from each sub-session:

from base import *

Now everything that was defined will be present when you start up the new
session.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

User manual

	Command line shell
	Session commands

	Extensions

	Device control
	Parameters

	Process control
	Scanning

	Focusing

	Data processing
	Coroutines

	High-performance computing

	Viewing processed data

	Experiments
	Acquisition

	Base

	Imaging

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	User manual

Command line shell

Concert comes with a command line interface that is launched by typing
concert into a shell. Several subcommands define the action of the tool.

Session commands

The concert tool is run from the command line. Without any arguments, its
help is shown:

$ concert
usage: concert [-h] [--version] ...

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

Concert commands:

 start Start a session
 init Create a new session
 mv Move session *source* to *target*
 log Show session logs
 show Show available sessions or details of a given *session*
 edit Edit a session
 rm Remove one or more sessions
 fetch Import an existing *session*

The tool is command-driven, that means you call it with a command as its first
argument. To read command-specific help, use:

$ concert [command] -h

Note

When Concert is installed system-wide, a bash completion for the
concert tool is installed too. This means, that commands and options
will be completed when pressing the Tab key.

init

Create a new session with the given name:

concert init experiment

If such a session already exists, Concert will warn you.

	
--force

	Create the session even if one already exists with this name.

	
--imports

	List of module names that are added to the import list.

Note

The location of the session files depends on the chosen installation method.
If you installed into a virtual environment venv, the files will be
stored in /path/to/venv/share/concert. If you have installed Concert
system-wide our without using a virtual environment, it is installed into
$XDG_DATA_HOME/concert or $HOME/.local/share/concert if the former
is not set. See the XDG Base Directory Specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]
for further information. It is probably a very good idea to put the
session directory under version control.

edit

Edit the session file by launching $EDITOR with the associated Python
module file:

concert edit session-name

This file can contain any kind of Python code, but you will most likely just add
device definitions and import processes that you want to use in a session. If the
session-name doesn’t exist it is created.

log

Show log of session:

concert log session-name

If a session is not given, the log command shows entries from all sessions.

	
--follow

	Instead of showing the past log, update as changes come in. This is the
same operation as if the log file was viewed with tail -f.

By default, logs are gathered in $XDG_DATA_HOME/concert/concert.log. To
change this, you can pass the --logto and --logfile options to the
start command. For example, if you want to output log to stderr use

concert --logto=stderr start experiment

or if you want to get rid of any log data use

concert --logto=file --logfile=/dev/null start experiment

show

Show all available sessions or details of a given session:

concert show [session-name]

mv

Rename a session:

concert mv old-session new-session

cp

Copy a session:

concert cp session session-copy

rm

Remove one or more sessions:

concert rm session-1 session-2

Warning

Be careful. The session file is unlinked from the file system and no
backup is made.

fetch

Import an existing session from a Python file:

concert fetch some-session.py

Concert will warn you if you try to import a session with a name that already
exists.

	
--force

	Overwrite session if it already exists.

	
--repo

	The URL denotes a Git repository from which the sessions are imported.

Warning

The server certificates are not verified when specifying an HTTPS
connection!

start

Load the session file and launch an IPython shell:

concert start session-name

The quantities package is already loaded and named q.

	
--logto={stderr, file}

	Specify a method for logging events. If this flag is not specified,
file is used and assumed to be
$XDG_DATA_HOME/concert/concert.log.

	
--logfile=<filename>

	Specify a log file if --logto is set to file.

	
--loglevel={debug, info, warning, error, critical}

	Specify lowest log level that is logged.

	
--non-interactive

	Run the session as a script and do not launch a shell.

Extensions

Spyder

If Spyder is installed, start the session within the Spyder GUI.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	User manual

Device control

Parameters

In Concert, a device is a software abstraction for a piece of hardware that
can be controlled. Each device consists of a set of named Parameter
instances and device-specific methods. If you know the parameter name, you can
get a reference to the parameter object by using the index operator:

pos_parameter = motor['position']

To set and get parameters explicitly , you can use the Parameter.get()
and Parameter.set() methods:

pos_parameter.set(1 * q.mm)
print (pos_parameter.get().result())

Both methods will return a Future. A future is a promise that a result will
be delivered when asked for. In the mean time other things can and should
happen concurrently. As you can see, to get the result of a future you call its
result() method.

An easier way to set and get parameter values are properties via the
dot-name-notation:

motor.position = 1 * q.mm
print (motor.position)

As you can see, accessing parameters this way will always be synchronous and
block execution until the value is set or fetched.

Parameter objects are not only used to communicate with a device but also carry
meta data information about the parameter. The most important ones are
Parameter.name, Parameter.unit and
Parameter.in_hard_limit as well as the doc string describing the
parameter. Moreover, parameters can be queried for access rights using
Parameter.is_readable() and Parameter.is_writable().

To get all parameters of an object, you can iterate over the device itself

for param in motor:
 print("{0} => {1}".format(param.unit, param.name))

Saving state

In some scenarios you would like to come back to a certain state. Let’s suppose,
you have a motor that you want to check if it moves. If it does, you want it to
go back to the same place it came from. For these cases you can use
Device.stash() to store the current state of a device and
Device.restore() to go back. Because this is done in a stacked fashion,
you can, for example, model local coordinate pretty easily:

motor.stash()

Do movements aka modify the "local" coordinate system
motor.move(1 * q.mm)

Go back to the original state
motor.restore()

Locking parameters

In case you want to prevent a parameter from being written you can use
ParameterValue.lock(). If you specify a permanent parameter to be True
the parameter cannot be unlocked anymore. In case you want to unlock
a parameter you can use ParameterValue.unlock(), to get the state
you can check the attribute ParameterValue.locked. All the
parameters within a device can be locked and unlocked at once, for example
one can do:

motor['position'].lock()
motor.position = 10 * q.mm
Does not work, you will get a LockError
motor.position.locked
True

motor['position'].unlock()

Works as expected
motor.position = 10 * q.mm

Lock the whole device (all parameters)
motor.lock(permanent=True)

This will not work anymore
motor.unlock()
You will get a LockError

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	User manual

Process control

Scanning

scan() is used to scan a device parameter and start a feedback action.
For instance, to set 10 motor positions between 5 and 12 millimeter and acquire
the flow rate of a pump could be written like:

from concert.processes import scan

Assume motor and pump are already defined

def get_flow_rate():
 return pump.flow_rate

x, y = scan(motor['position'], get_flow_rate,
 5*q.mm, 12*q.mm, 10).result()

As you can see scan() always yields a future that needs to be resolved
when you need the result.

ascan() and dscan() are used to scan multiple parameters
in a similar way as SPEC:

from concert.quantities import q
from concert.processes import ascan

def do_something(parameters):
 for each parameter in parameters:
 print(parameter)

ascan([(motor1['position'], 0 * q.mm, 25 * q.mm),
 (motor2['position'], -2 * q.cm, 4 * q.cm)],
 n_intervals=10, handler=do_something)

Focusing

To adjust the focal plane of a camera, you use focus() like this:

from concert.processes import focus
from concert.cameras.uca import Camera
from concert.motors.dummy import LinearMotor

motor = LinearMotor()
camera = Camera('mock')
focus(camera, motor)

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	User manual

Data processing

Coroutines

Coroutines provide a way to process data and yield execution until more data is
produced. Generators represent the source of data and can used as normal
iterators, e.g. in a for loop. Coroutines can use the output of a generator
to either process data and output a new result item in a filter fashion or
process the data without further results in a sink fashion.

Coroutines are simple functions that get their input by calling yield on the
right side or as an argument. Because they need to be started in a particular
way, it is useful to decorate a coroutine with the coroutine()
decorator:

from concert.coroutines.base import coroutine

@coroutine
def printer():
 while True:
 item = yield
 print(item)

This coroutine fetches data items and prints them one by one. Because no data is
produced, this coroutine falls into the sink category. Concert provides some
common pre-defined sinks in the sinks module.

Filters hook into the data stream and process the input to produce some output.
For example, to generate a stream of squared input, you would write:

@coroutine
def square(consumer):
 while True:
 item = yield
 consumer.send(item**2)

You can find a variety of pre-defined filters in the filters module.

Connecting data sources with coroutines

In order to connect a generator that yields data to a filter or a sink
it is necessary to bootstrap the pipeline by using the inject() function,
which forwards generated data to a coroutine:

from concert.coroutines.base import inject

def generator(n):
 for i in range(n):
 yield i

Use the output of generator to feed into printer
inject(generator(5), printer())

To fan out a single input stream to multiple consumers, you can use the
broadcast() like this:

from concert.coroutines.base import broadcast

source(5, broadcast(printer(),
 square(printer())))

High-performance processing

The generators and coroutines yield execution, but if the data production should
not be stalled by data consumption the coroutine should only provide data
buffering and delegate the real consumption to a separate thread or process. The
same can be achieved by first buffering the data and then yielding them by a
generator. It comes from the fact that a generator will not produce a new value
until the old one has been consumed.

High-performance computing

The ufo module provides classes to process data from an experiment with
the UFO data processing framework. The simplest example could look like this:

from concert.ext.ufo import InjectProcess
from gi.repository import Ufo
import numpy as np
import scipy.misc

pm = Ufo.PluginManager()
writer = pm.get_task('writer')
writer.props.filename = 'foo-%05i.tif'

proc = InjectProcess(writer)

proc.run()
proc.push(scipy.misc.lena())
proc.join()

To save yourself some time, the ufo module provides a wrapper around the
raw UfoPluginManager:

from concert.ext.ufo import PluginManager

pm = PluginManager()
writer = pm.get_task('writer', filename='foo-%05i.tif')

Viewing processed data

Concert has a Matplotlib integration to simplify viewing 1D time series with the
PyplotViewer and 2D image data with the PyplotImageViewer:

from concert.devices.cameras.dummy import Camera
from concert.ext.viewers import PyplotImageViewer

Create a camera and execute something with it in recording state
camera = Camera()
with camera.recording():
 # Create a viewer and show one frame
 viewer = PyplotImageViewer()
 viewer.show(camera.grab())

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	User manual

Experiments

Experiments connect data acquisition and processing. They can be run multiple times
by the base.Experiment.run(), they take care of proper file structure and
logging output.

Acquisition

Experiments consist of Acquisition objects which encapsulate data generator
and consumers for a particular experiment part (dark fields, radiographs, ...). This
way the experiments can be broken up into smaller logical pieces. A single acquisition
object needs to be reproducible in order to repeat an experiment more times, thus we
specify its generator and consumers as callables which return the actual generator or
consumer. We need to do this because generators cannot be “restarted”. An example of
an acquisition could look like this:

from concert.coroutines.base import coroutine
from concert.experiments import Acquisition

This is a real generator, num_items is provided somewhere in our session
def produce():
 for i in range(num_items):
 yield i

A simple data forwarder filter, next_consumer has to be already defined
@coroutine
def consumer():
 while True:
 item = yield
 next_consumer.send(item)

acquisition = Acquisition('foo', produce, consumer_callers=[consumer])
Now we can run the acquisition
acquisition()

	
class concert.experiments.base.Acquisition(name, generator_caller, consumer_callers=None)

	An acquisition object connects data generator to consumers.

	
generator_caller

	a callable which returns a generator once called

	
consumer_callers

	a list of callables which return a coroutine once started

Base

Base base.Experiment makes sure a directory for each run is created and
logger output goes to that directory.

	
class concert.experiments.base.Experiment(acquisitions, directory_prefix, log=None, log_file_name='experiment.log')

	Experiment base class. An experiment can be run multiple times
with logging output saved on disk. The log from every
run() is saved in the current experiment
directory given by directory_prefix.

	
acquisitions

	A list of acquisitions this experiment is composed of

	
directory_prefix

	Directory prefix is either a formattable string in which case the
at each experiment run a new directory given by the prefix and
the current iteration is created. If the directory_prefix is a
simple string then the individual experiment runs are stored in
its subdirectories starting with scan_ and suffixed by the run
iteration.

	
log

	A logger to which a file handler will be attached in order to
store the log output in the current directory

	
log_file_name

	Log file name used for storing logging information.

	
acquire()

	Acquire data by running the acquisitions. This is the method which implements
the data acquisition and should be overriden if more functionality is required,
unlike run().

	
directory

	Current directory for running the experiment.

	
get_acquisition(name)

	Get acquisition by its name. In case there are more like it, the first
one is returned.

	
run()

	Create current directory, attach logging output to file and run the
acquire(). After the run is complete the logging
is cleaned up automatically. This method should not be overriden.

	
swap(first, second)

	Swap acquisition first with second. If there are more occurences
of either of them then the ones which are found first in the acquisitions
list are swapped.

Imaging

Imaging experiments all subclass imaging.Experiment, which makes sure
all the acquired frames are written to disk.

	
class concert.experiments.imaging.Experiment(acquisitions, directory_prefix, log=None, log_file_name='experiment.log', writer=<function write_tiff at 0x4260050>)

	Imaging experiment stores images acquired in acquisitions on disk
automatically.

	
acquire()

	Run the experiment. Add writers to acquisitions dynamically.

A basic frame acquisition generator which triggers the camera itself is provided by
frames()

	
concert.experiments.imaging.frames(num_frames, camera, callback=None)

	A generator which takes num_frames using camera. callback is called
after every taken frame.

There are tomography helper functions which make it easier to define the proper
settings for conducting a tomographic experiment.

	
concert.experiments.imaging.tomo_angular_step(frame_width)

	Get the angular step required for tomography so that every pixel of the frame
rotates no more than one pixel per rotation step. frame_width is frame size in
the direction perpendicular to the axis of rotation.

	
concert.experiments.imaging.tomo_projections_number(frame_width)

	Get the minimum number of projections required by a tomographic scan in
order to provide enough data points for every distance from the axis of
rotation. The minimum angular step is
considered to be needed smaller than one pixel in the direction
perpendicular to the axis of rotation. The number of pixels in this
direction is given by frame_width.

	
concert.experiments.imaging.tomo_max_speed(frame_width, frame_rate)

	Get the maximum rotation speed which introduces motion blur less than one
pixel. frame_width is the width of the frame in the direction
perpendicular to the rotation and frame_rate defines the time required
for recording one frame.

Note: frame rate is required instead of exposure time because the
exposure time is usually shorter due to the camera chip readout time.
We need to make sure that by the next exposure the sample hasn’t moved
more than one pixel from the previous frame, thus we need to take into
account the whole frame taking procedure (exposure + readout).

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

Development

	Writing devices
	Get the code

	Basic concepts

	Adding a new device

	Creating a device class

	Asynchronous execution
	Concurrency

	Helpers
	Messaging

	Contributing
	Reporting bugs

	Fixing bugs or adding features

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	Development

Writing devices

Get the code

Concert is developed using Git [http://git-scm.com] on the popular GitHub platform. To clone the
repository call:

$ git clone https://github.com/ufo-kit/concert

To get started you are encouraged to install the development dependencies via
pip:

$ cd concert
$ pip install -r requirements.txt

After that you can simply install the development source with

$ make install

Run the tests

The core of Concert is tested using Python’s standard library unittest [http://python.readthedocs.org/en/latest/library/unittest.html#module-unittest]
module and nose [https://nose.readthedocs.org/en/latest/]. To run all tests, you can call nose directly in the root
directory or run make with the check argument

$ make check

Some tests take a lot of time to complete and are marked with the @slow
decorator. To skip them during regular development cycles, you can run

$ make check-fast

You are highly encouraged to add new tests when you are adding a new feature to
the core or fixing a known bug.

Basic concepts

The core abstraction of Concert is a Parameter. A parameter has at
least a name but most likely also associated setter and getter callables.
Moreover, a parameter can have units and limiters associated with it.

The modules related to device creation are found here

concert/
|-- base.py
`-- devices
 |-- base.py
 |-- cameras
 | |-- base.py
 | `-- ...
 |-- __init__.py
 |-- motors
 | |-- base.py
 | `-- ...
 `-- storagerings
 |-- base.py
 `-- ...

Adding a new device

To add a new device to an existing device class (such as motor, pump,
monochromator etc.), a new module has to be added to the corresponding device
class package. Inside the new module, the concrete device class must then import
the base class, inherit from it and implement all abstract method stubs.

Let’s assume we want to add a new motor called FancyMotor. We first create a
new module called fancy.py in the concert/devices/motors directory
package. In the fancy.py module, we first import the base class

from concert.devices.motors.base import LinearMotor

Our motor will be a linear one, let’s sub-class LinearMotor:

class FancyMotor(LinearMotor):
 """This is a docstring that can be looked up at run-time by the `ddoc`
 tool."""

In order to install all required parameters, we have to call the base
constructor. Now, all that’s left to do, is implementing the abstract methods that
would raise a AccessorNotImplementedError:

def _get_position(self):
 # the returned value must have units compatible with units set in
 # the Quantity this getter implements
 return self.position

def _set_position(self, position):
 # position is guaranteed to be in the units set by the respective
 # Quantity
 self.position = position

We guarantee that in setters which implement a Quantity, like the
_set_position() above, obtain the value in the exact same units as they
were specified in the respective Quantity they implement. E.g. if the
above _set_position() implemented a quantity with units set in kilometers,
the position of the _set_position() will also be in kilometers.
On the other hand the getters do not need to return the exact same quantity
but the value must be compatible, so the above _get_position() could
return millimeters and the user would get the value in kilometers, as defined
in the respective Quantity.

Creating a device class

Defining a new device class involves adding a new package to the
concert/devices directory and adding a new base.py class that inherits
from Device and defines necessary Parameter and
Quantity objects.

In this exercise, we will add a new pump device class. From an abstract point of
view, a pump is characterized and manipulated in terms of the volumetric flow
rate, e.g. how many cubic millimeters per second of a medium is desired.

First, we create a new base.py into the new concert/devices/pumps
directory and import everything that we need:

import quantities as q
from concert.base import Quantity
from concert.devices.base import Device

The Device handles the nitty-gritty details of messaging and parameter
handling, so our base pump device must inherit from it. Furthermore, we have to
specify which kind of parameters we want to expose and how we get the
values for the parameters (by tying them to getter and setter callables):

class Pump(Device):

 flow_rate = Quantity(q.m**3 / q.s,
 lower=0 * q.m**3 / q.s, upper=1 * q.m**3 / q.s,
 help="Flow rate of the pump")

 def __init__(self):
 super(Pump, self).__init__()

The flow_rate parameter can only receive values from zero to one cubic meter
per second.

We didn’t specify explicit fget and fset functions, which is why implicit
setters and getters called _set_flow_rate and _get_flow_rate are installed.
The real devices then need to implement these. You can however, also specify
explicit setters and getters in order to hook into the get and set process:

class Pump(Device):

 def __init__(self):
 super(Pump, self).__init__()

 def _intercept_get_flow_rate(self):
 return self._get_flow_rate() * 10

 flow_rate = Parameter(unit=q.m**3 / q.s,
 fget=_intercept_get_flow_rate)

Be aware, that in this case you have to list the parameter after the functions
that you want to refer to.

In case you want to specify the name of the accessor function yourself and rely
on implementation by subclasses, you have to raise an
AccessorNotImplementedError:

class Pump(Device):

 ...

 def _set_flow_rate(self):
 raise AccessorNotImplementedError

State machine

A formally defined finite state machine is necessary to ensure and reason about
correct behaviour. Concert provides an implicitly defined, decorator-based state
machine. All you need to do is declare a State object on the base
device class and apply the transition() decorator on each method that
changes the state of a device:

from concert.fsm import State, transition

class Motor(Device):

 state = State(default='open')

 ...

 @transition(source='standby', target='moving')
 def start_moving(self):
 ...

If the source state is valid on such a device, start_moving will run and
eventually change the state to moving. In case of two-step functions, an
immediate state can be set that is valid throughout the body of the
function:

@transition(source='standby', target='standby', immediate='moving')
def move(self):
 ...

Besides single state strings you can also add arrays of strings and a catch-all
* state that matches all states.

In some cases it might be necessary to reach more than one target state. For
this, you can pass a list of possible target state and must provide a check
function that returns the current state. It is called after the decorated
function was called:

@transition(source='here', target=['this', 'that'], check=func)
def do_something(self):
 ...

There is no explicit error handling implemented but it can be easily modeled by
adding error states and reset functions that transition out of them.

Parameters

In case changing a parameter value causes a state transition, add a
transition() to the Parameter object:

class Motor(Device):

 state = State(default='standby')

 velocity = Parameter(unit=q.m / q.s,
 transition(source='*', target='moving'))

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	Development

Asynchronous execution

Concurrency

Every user defined function or method must be synchronous (blocking). To
define a function as asynchronous, use the async() decorator:

from concert.async import async

@async
def synchronous_function():
 # long running operation
 return 1

Every asynchronous function returns a Future that can be used for explicit
synchronization:

future = synchronous_function()
print(future.done())
result = future.result()

Every future that is returned by Concert, has an additional method join
that will block until execution finished and raise the exception that might
have been raised in the wrapped function. It will also return the future to
gather the result:

try:
 future = synchronous_function().join()
 result = future.result()
except:
 print("synchronous_function raised an exception")

The asynchronous execution provided by Concert deals with concurrency. If the
user wants to employ real parallelism they should make use of the
multiprocessing module which provides functionality not limited by Python’s
global interpreter lock.

Synchronization

When using the asynchronous getters and setters of Device and
Parameter, processes can not be sure if other processes or the user
manipulate the device during the execution. To lock devices or specific
parameters, processes can use them as context managers:

with motor, pump['foo']:
 motor.position = 2 * q.mm
 pump.foo = 1 * q.s

Inside the with environment, the process has exclusive access to the devices
and parameters.

Disable asynchronous execution

Testing and debugging asynchronous code can be difficult at times because the
real source of an error is hidden behind calls from different places. To disable
asynchronous execution (but still keeping the illusion of having Futures
returned), you can import DISABLE_ASYNC and set it to True before
importing anything else from Concert.

Concert already provides a Nose plugin that adds a --disable-async flag to
the test runner which in turn sets DISABLE_ASYNC to True.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	Development

Helpers

Messaging

The backbone of the local messaging system is a dispatching mechanism based on
the publish-subscribe analogy. Once a dispatcher object is created, objects can
Dispatcher.subscribe() to messages from other objects and be notified
when other objects Dispatcher.send() a message to the dispatcher:

from concert.helpers import Dispatcher

def handle_message(sender):
 print("{0} send me a message".format(sender))

dispatcher = Dispatcher()

obj = {}
dispatcher.subscribe(obj, 'foo', handle_message)
dispatcher.send(obj, 'foo')

If not stated otherwise, users should use the global dispatcher for
sending and receiving messages.

	
concert.helpers.dispatcher

	A global Dispatcher instance used by all devices.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	Development

Contributing

Reporting bugs

Any bugs concerning the Concert core library and script should be reported as an
issue on the GitHub issue tracker [https://github.com/ufo-kit/concert/issues].

Fixing bugs or adding features

Bug fixes and new features must be in pull request [https://github.com/ufo-kit/concert/pulls] form. Pull request
commits should consist of single logical changes and bear a clear message
respecting common commit message conventions [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]. Before the change is merged
eventually it must be rebased against master.

Bug fixes must come with a unit test that will fail on the bug and pass with the
fix. If an issue exists reference it in the branch name and commit message, e.g.
fix-92-remove-foo and “Fix #92: Remove foo”.

New features must follow PEP 8 [http://www.python.org/dev/peps/pep-0008/] and must be documented thoroughly.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

API reference

	Core objects
	Parameters

	Collection of parameters

	State machine

	Devices

	Asynchronous execution

	Exceptions

	Configuration

	Sessions

	Networking
	Socket Connections

	TANGO

	Helpers

	Device classes
	Cameras

	I/O

	Lightsources

	Monochromators

	Motors

	Axes

	Photodiodes

	Positioners

	Pumps

	Scales

	Shutters

	Storage rings

	Processes
	Scanning

	Focusing

	Alignment

	Coroutines
	Sinks

	Filters

	Optimization

	Extensions
	UFO Processing

	Viewers

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	API reference

Core objects

Parameters

	
class concert.base.Parameter(fget=None, fset=None, data=None, transition=None, help=None)

	A parameter with getter and setter.

Parameters are similar to normal Python properties and can additionally
trigger state transitions. If fget or fset is not given, you must
implement the accessor functions named _set_name and _get_name:

from concert.base import Parameter, State

class SomeClass(object):

 state = State(default='standby')

 def actual(self):
 return 'moving'

 param = Parameter(transition=transition(source='standby',
 target=['standby', 'moving'],
 check=actual))

 def _set_param(self, value):
 pass

 def _get_param(self):
 pass

When a Parameter is attached to a class, you can modify it by
accessing its associated ParameterValue with a dictionary
access:

obj = SomeClass()
print(obj['param'])

fget is a callable that is called when reading the parameter. fset
is called when the parameter is written to.

data is passed to the state transition function.

transition is a transition() that changes states when a value
is written to the parameter.

help is a string describing the parameter in more detail.

	
class concert.base.ParameterValue(instance, parameter)

	Value object of a Parameter.

	
lock(permanent=False)

	Lock parameter for writing. If permament is True the parameter
cannot be unlocked anymore.

	
locked

	Return True if the parameter is locked for writing.

	
restore()

	Restore the last value saved with ParameterValue.stash().

If the parameter can only be read or no value has been saved, this
operation does nothing.

	
stash(*args, **kwargs)

	Save the current value internally on a growing stack.

If the parameter is writable the current value is saved on a stack and
to be later retrieved with ParameterValue.restore().

	
unlock()

	Unlock parameter for writing.

	
class concert.base.Quantity(unit, fget=None, fset=None, lower=None, upper=None, data=None, transition=None, help=None)

	Bases: concert.base.Parameter

A Parameter associated with a unit.

fget, fset, data, transition and help are identical to the
Parameter constructor arguments.

unit is a Pint quantity. lower and upper denote soft limits
between the Quantity values can lie.

	
class concert.base.QuantityValue(instance, quantity)

	Bases: concert.base.ParameterValue

	
lock_limits(permanent=False)

	Lock limits, if permanent is True the limits cannot be unlocker anymore.

	
unlock_limits()

	Unlock limits.

Collection of parameters

	
class concert.base.Parameterizable

	Collection of parameters.

For each class of type Parameterizable, Parameter can
be set as class attributes

class Device(Parameterizable):

 def get_something(self):
 return 'something'

 something = Parameter(get_something)

There is a simple Parameter and a parameter which models a
physical quantity Quantity.

A Parameterizable is iterable and returns its parameters of type
ParameterValue or its subclasses

for param in device:
 print("name={}".format(param.name))

To access a single name parameter object, you can use the [] operator:

param = device['position']
print param.is_readable()

If the parameter name does not exist, a ParameterError is raised.

Each parameter value is accessible as a property. If a device has a
position it can be read and written with:

param.position = 0 * q.mm
print param.position

	
install_parameters(params)

	Install parameters at run-time.

params is a dictionary mapping parameter names to Parameter
objects.

	
lock(permanent=False)

	Lock all the parameters for writing. If permanent is True, the
parameters cannot be unlocked anymore.

	
restore(*args, **kwargs)

	Restore all parameters saved with Parameterizable.stash().

	
stash(*args, **kwargs)

	Save all writable parameters that can be restored with
Parameterizable.restore().

The values are stored on a stacked, hence subsequent saved states can
be restored one by one.

	
unlock()

	Unlock all the parameters for writing.

State machine

	
class concert.base.State(default=None)

	Finite state machine.

Use this on a class, to keep some sort of known state. In order to enforce
restrictions, you would decorate methods on the class with
transition():

class SomeObject(object):

 state = State(default='standby')

 @transition(source='*', target='moving')
 def move(self):
 pass

Accessing the state variable will return the current state value, i.e.:

obj = SomeObject()
assert obj.state == 'standby'

The state cannot be set explicitly by:

obj.state = 'some_state'

but the object needs to provide methods which transition out of
states, the same holds for transitioning out of error states.

	
concert.base.transition(source='*', target=None, immediate=None, check=None)

	Decorates a method that triggers state transitions.

source denotes the source state that must be present at the time of
invoking the decorated method. target is the state that the state object
will be after successful completion of the method or a list of possible
target states. immediate is an optional state that will be set during
execution of the method.

check is a callable that will be called to determine the actual state in
case target is a list of possible target states. Hence, when check is
called it must return one of those target states.

Devices

	
class concert.devices.base.Device

	Bases: concert.base.Parameterizable

A Device provides locked access to a real-world device.

It implements the context protocol to provide locking:

with device:
 # device is locked
 device.parameter = 1 * q.m
 ...

device is unlocked again

Asynchronous execution

	
exception concert.async.KillException

	Exception that may be thrown during the execution of an async()
decorated function. The function may run cleanup code.

	
concert.async.async()

	A decorator for functions which are executed asynchronously.

	
concert.async.threaded()

	Threaded execution of a function func.

	
class concert.async.Dispatcher

	Core dispatcher

	
send(sender, message)

	Send message from sender.

	
subscribe(sender, message, handler)

	Subscribe to a message sent by sender.

When message is sent by sender, handler is called with sender as the
only argument.

	
unsubscribe(sender, message, handler)

	Remove handler from the subscribers to (sender, message).

	
concert.async.wait(futures)

	Wait for the list of futures to finish and raise exceptions if
happened.

Exceptions

	
class concert.base.UnitError

	Raised when an operation is passed value with an incompatible unit.

	
class concert.base.LimitError

	Raised when an operation is passed a value that exceeds a limit.

	
class concert.base.ParameterError(parameter)

	Raised when a parameter is accessed that does not exists.

	
class concert.base.AccessorNotImplementedError

	Raised when a setter or getter is not implemented.

	
class concert.base.ReadAccessError(parameter)

	Raised when user tries to change a parameter that cannot be written.

	
class concert.base.WriteAccessError(parameter)

	Raised when user tries to read a parameter that cannot be read.

Configuration

	
concert.config.DISABLE_ASYNC

	Disable asynchronous execution by returning a dummy future which is not
executed synchronusly.

	
concert.config.DISABLE_GEVENT

	Turn of gevent support and fall back to ThreadPoolExecutor approach.

Sessions

	
concert.session.utils.code_of(func)

	Show implementation of func.

	
concert.session.utils.ddoc()

	Render device documentation.

	
concert.session.utils.dstate()

	Render device state in a table.

	
concert.session.utils.get_default_table(field_names, widths=None)

	Return a prettytable styled for use in the shell. field_names is a
list of table header strings.

	
concert.session.utils.pdoc(hide_blacklisted=True)

	Render process documentation.

Networking

Networking package facilitates all network connections, e.g. sockets and Tango.

Socket Connections

	
class concert.networking.base.SocketConnection(host, port, return_sequence='n')

	A two-way socket connection. return_sequence is a string appended
after every command indicating the end of it, the default value
is a newline (n).

	
execute(data)

	Execute command and wait for response (thread safe).

	
recv()

	Read data from the socket. The result is first stripped
from the trailing return sequence characters and then returned.

	
send(data)

	Send data to the peer. The return sequence characters
are appended to the data before it is sent.

	
class concert.networking.aerotech.Connection(host, port)

	Aerotech socket connection.

	
recv()

	Return properly interpreted answer from the controller.

TANGO

Tango [http://www.tango-controls.org/] devices are interfaced by PyTango [http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html], one can obtain the DeviceProxy [http://www.tango-controls.org/static/PyTango/latest/doc/html/client/device_proxy.html] by
the get_tango_device() function.

	
concert.networking.base.get_tango_device(uri, peer=None)

	Get a Tango device by specifying its uri. If peer is given change the
tango_host specifying which database to connect to. Format is host:port
as a string.

Helpers

	
class concert.helpers.Bunch(values)

	Encapsulate a list or dictionary to provide attribute-like access.

Common use cases look like this:

d = {'foo': 123, 'bar': 'baz'}
b = Bunch(d)
print(b.foo)
>>> 123

l = ['foo', 'bar']
b = Bunch(l)
print(b.foo)
>>> 'foo'

	
class concert.helpers.Command(name, opts)

	Command class for the CLI script

Command objects are loaded at run-time and injected into Concert’s
command parser.

name denotes the name of the sub-command parser, e.g. “mv” for the
MoveCommand. opts must be an argparse-compatible dictionary
of command options.

	
run(*args, **kwargs)

	Run the command

	
concert.helpers.memoize(func)

	Memoize the result of func.

Remember the result of func depending on its arguments. Note, that this
requires that the function is free from any side effects, e.g. returns the
same value given the same arguments.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	API reference

Device classes

Cameras

	
class concert.devices.cameras.base.Camera

	Bases: concert.devices.base.Device

Base class for remotely controllable cameras.

	
frame-rate

	Frame rate of acquisition in q.count per time unit.

	
grab()

	Return a NumPy array with data of the current frame.

	
recording(*args, **kwds)

	A context manager for starting and stopping the camera.

In general it is used with the with keyword like this:

with camera.recording():
 frame = camera.grab()

	
start_recording(instance, *args, **kwargs)

	Start recording frames.

	
stop_recording(instance, *args, **kwargs)

	Stop recording frames.

	
stream(*args, **kwargs)

	Grab frames continuously and send them to consumer, which
is a coroutine.

	
trigger()

	Trigger a frame if possible.

I/O

	
class concert.devices.io.base.IO

	Bases: concert.devices.base.Device

The IO device consists of ports which can be readable, writable or
both.

	
ports

	Port IDs used by read_port() and write_port()

	
read_port(port)

	Read a port.

	
write_port(port, value)

	Write a value to the port.

Lightsources

	
class concert.devices.lightsources.base.LightSource

	Bases: concert.devices.base.Device

A base LightSource class.

Monochromators

	
class concert.devices.monochromators.base.Monochromator

	Bases: concert.devices.base.Device

Monochromator device which is used to filter the beam in order to
get a very narrow energy bandwidth.

	
energy

	Monochromatic energy in electron volts.

	
wavelength

	Monochromatic wavelength in meters.

Motors

Linear

Linear motors are characterized by moving along a straight line.

	
class concert.devices.motors.base.LinearMotor

	Bases: concert.devices.motors.base._PositionMixin

One-dimensional linear motor.

	
position

	Position of the motor in length units.

	
class concert.devices.motors.base.ContinuousLinearMotor

	Bases: concert.devices.motors.base.LinearMotor

One-dimensional linear motor with adjustable velocity.

	
velocity

	Current velocity in length per time unit.

Rotational

Rotational motors are characterized by rotating around an axis.

	
class concert.devices.motors.base.RotationMotor

	Bases: concert.devices.motors.base._PositionMixin

One-dimensional rotational motor.

	
position

	Position of the motor in angular units.

	
class concert.devices.motors.base.ContinuousRotationMotor

	Bases: concert.devices.motors.base.RotationMotor

One-dimensional rotational motor with adjustable velocity.

	
velocity

	Current velocity in angle per time unit.

Axes

An axis is a coordinate system axis which can realize either translation
or rotation, depending by which type of motor it is realized.

	
class concert.devices.positioners.base.Axis(coordinate, motor, direction=1, position=None)

	Bases: object

An axis represents a Euclidean axis along which one can translate or
around which one can rotate. The axis coordinate is a string representing
the Euclidean axis, i.e. ‘x’ or ‘y’ or ‘z’. Movement is realized by a motor.
An additional position argument is necessary for calculatin more complicated
motion types, e.g. rotation around arbitrary point in space. It is the local
position with respect to a concert.devices.positioners.base.Positioner
in which it is placed.

	
get_position()

	Get position asynchronously with respect to axis direction.

	
set_position(position)

	Set the position asynchronously with respect to axis direction.

Photodiodes

Photodiodes measure light intensity.

	
class concert.devices.photodiodes.base.PhotoDiode

	Bases: concert.devices.base.Device

Impementation of photo diode with V output signal

Positioners

Positioner is a device consisting of more
concert.devices.positioners.base.Axis
instances which make it possible to specify a 3D position and
orientation of some object.

	
class concert.devices.positioners.base.Positioner(axes, position=None)

	Bases: concert.devices.base.Device

Combines more motors which move to form a complex motion. axes is a list
of Axis instances. position is a 3D vector of coordinates specifying
the global position of the positioner.

If a certain coordinate in the positioner is missing, then when we set the
position or orientation we can specify the respective vector position to
be zero or numpy.nan.

	
back(value)

	Move back by value.

	
down(value)

	Move down by value.

	
forward(value)

	Move forward by value.

	
left(value)

	Move left by value.

	
move(position)

	Move by specified position.

	
right(value)

	Move right by value.

	
rotate(angles)

	Rotate by angles.

	
up(value)

	Move up by value.

Imaging Positioners

Imaging positioner is a positioner capable of moving in x and y
directions by the given amount of pixels.

	
class concert.devices.positioners.imaging.Positioner(axes, detector, position=None)

	Bases: concert.devices.positioners.base.Positioner

A positioner which takes into account a detector with some pixel size.
This way the user can specify the movement in pixels.

	
move(position)

	Move by specified position which can be given in meters or pixels.

Pumps

	
class concert.devices.pumps.base.Pump

	Bases: concert.devices.base.Device

A pumping device.

	
start()

	Start pumping.

	
stop()

	Stop pumping.

Scales

	
class concert.devices.scales.base.Scales

	Bases: concert.devices.base.Device

Base scales class.

	
class concert.devices.scales.base.TarableScales

	Bases: concert.devices.scales.base.Scales

Scales which can be tared.

	
tare(*args, **kwargs)

	Tare the scales.

Shutters

	
class concert.devices.shutters.base.Shutter

	Bases: concert.devices.base.Device

Shutter device class implementation.

	
close()

	Close the shutter.

	
open()

	Open the shutter.

Storage rings

	
class concert.devices.storagerings.base.StorageRing

	Bases: concert.devices.base.Device

Read-only access to storage ring information.

	
current

	Ring current

	
energy

	Ring energy

	
lifetime

	Ring lifetime in hours

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	API reference

Processes

Scanning

	
concert.processes.scan(param, feedback, minimum=None, maximum=None, intervals=64, convert=lambda x: x)

	Scan the parameter object in intervals steps between minimum and
maximum and call feedback at each step. feedback must return a value
that is evaluated at the parameter position. If minimum or maximum is
None, ParameterValue.lower or ParameterValue.upper is
used.

Set convert to a callable that transforms the parameter value prior to
setting it.

Returns a tuple (x, y) with parameter and feedback values.

	
concert.processes.ascan(param_list, n_intervals, handler, initial_values=None)

	For each of the n_intervals and for each of the (parameter, start,
stop) tuples in param_list, calculate a set value from (stop - start) /
n_intervals and set parameter to it:

ascan([(motor['position'], 0 * q.mm, 2 * q.mm)], 5, handler)

When all devices have reached the set point handler is called with a list
of the parameters as its first argument.

If initial_values is given, it must be a list with the same length as
devices containing start values from where each device is scanned.

	
concert.processes.dscan(parameter_list, n_intervals, handler)

	For each of the n_intervals and for each of the (parameter, start,
stop) tuples in param_list, calculate a set value from (stop - start) /
n_intervals and set parameter.

	
concert.processes.scan_param_feedback(scan_param, feedback_param, minimum=None, maximum=None, intervals=64, convert=<function <lambda> at 0x49e2aa0>)

	Convenience function to scan one parameter and measure another.

Scan the scan_param object and measure feedback_param at each of the
intervals steps between minimum and maximum.

Returns a tuple (x, y) with scanned parameter and measured values.

Focusing

	
concert.processes.focus(camera, motor, measure=<function std at 0x31259b0>, opt_kwargs=None, plot_consumer=None, frame_consumer=None)

	Focus camera by moving motor. measure is a callable that computes a
scalar that has to be maximized from an image taken with camera.
opt_kwargs are keyword arguments sent to the optimization algorithm.
plot_consumer is fed with y values from the optimization and
frame_consumer is fed with the incoming frames.

This function is returning a future encapsulating the focusing event. Note,
that the camera is stopped from recording as soon as the optimal position
is found.

Alignment

	
concert.processes.align_rotation_axis(*args, **kwargs)

	align_rotation_axis(camera, rotation_motor, x_motor=None, z_motor=None,
measure=rotation_axis, num_frames=10, absolute_eps=0.1 * q.deg, max_iterations=5,
flat=None, dark=None, frame_consumer=None)

Align rotation axis. camera is used to obtain frames, rotation_motor
rotates the sample around the tomographic axis of rotation, x_motor
turns the sample around x-axis, z_motor turns the sample around z-axis.
measure provides axis of rotation angular misalignment data (a callable),
num_frames defines how many frames are acquired and passed to the measure.
absolute_eps is the threshold for stopping the procedure. If max_iterations
is reached the procedure stops as well. flat and dark are the normalization
frames applied on the acquired frames. frame_consumer is a coroutine which will
receive the frames acquired at different sample positions.

The procedure finishes when it finds the minimum angle between an
ellipse extracted from the sample movement and respective axes or the
found angle drops below absolute_eps. The axis of rotation after
the procedure is (0,1,0), which is the direction perpendicular
to the beam direction and the lateral direction.

	
concert.processes.center_to_beam(*args, **kwargs)

	Tries to center the camera cam to the beam by moving with the motors
xmotor and zmotor. It starts by searching the beam inside the
search-area defined by xborder and zborder. Argument pixelsize is
needed to convert pixelcoordinates into realworld-coordinates of the
motors.
Exceptions are raised on fail.

Optional arguments xstep, zstep, thres, tolerance and
max_iterations are passed to the functions ‘find_beam(...)’ and
‘center2beam(...)’.

	
concert.processes.drift_to_beam(cam, xmotor, zmotor, pixelsize, tolerance=5, max_iterations=100)

	Moves the camera cam with motors xmotor and zmotor until the
center of mass is nearer than tolerance-pixels to the center of the
frame or max_iterations is reached.

To convert pixelcoordinates to realworld-coordinates of the motors the
pixelsize (scalar or 2-element array-like, e.g. [4*q.um, 5*q.um]) is
needed.

	
concert.processes.find_beam(cam, xmotor, zmotor, pixelsize, xborder, zborder, xstep=None, zstep=None, thres=1000)

	Scans the area defined by xborder and zborder for the beam until
beam_visible returns True.
Startpoint is the current motor-position if this position is inside the
defined area else it start from the center of that area.
It searches in a spiral around the startpoint.

cam is the camera-device, xmotor the motor-device horizontally aligned
to the image and zmotor the motor-device vertically aligned to the image.
pixelsize determines the realworld size of an image pixels (scalar or
2-element array-like, e.g. [4*q.um, 5*q.um]). xborder and zborder
define the search area. Each constructed with a start- and an end-value
(e.g. [-1.2*q.mm, 5.5*q.mm]).

Optional arguments xstep and zstep define the length of one movement
in the specific direction. Defaults are calculated from cam_img.shape and
pixelsize.
Optional argument thres will be past to beam_visible().

Coroutines

	
concert.coroutines.base.broadcast(*consumers)

	Forward data to all consumers.

	
concert.coroutines.base.coroutine(func)

	Start a coroutine automatically without the need to call
next() or send(None) first.

	
concert.coroutines.base.inject(generator, consumer)

	Let a generator produce a value and forward it to consumer.

Sinks

	
class concert.coroutines.sinks.Result

	The object is callable and when called it becomes a coroutine which accepts
items and stores them in a variable which allows the user to obtain the
last stored item at any time point.

	
concert.coroutines.sinks.null()

	A black-hole.

	
concert.coroutines.sinks.write_images(writer, prefix="image_{:>05}")

	Write images on disk with specified writer and file name prefix.
writer is a callable with the following nomenclature:

writer(file_name_prefix, data)

The file extension needs to be applied by a particular writer.

Filters

	
class concert.coroutines.filters.PickSlice(index)

	Pick a slice from a 3D volume.

	
concert.coroutines.filters.absorptivity(consumer)

	Get the absorptivity from a flat corrected stream of images. The intensity
after the object is defined as \(I = I_0 \cdot e^{-\mu t}\) and we
extract the absorptivity \(\mu t\) from the stream of flat corrected
images \(I / I_0\).

	
concert.coroutines.filters.average_images(consumer)

	Average images as they come and send them to consumer.

	
concert.coroutines.filters.backproject(center, consumer)

	Filtered backprojection filter. The filter receives a sinogram,
filters it and based on center of rotation it backprojects it.
The slice is then sent to consumer.

	
concert.coroutines.filters.downsize(consumer, x_slice=None, y_slice=None, z_slice=None)

	Downsize images in 3D and send them to consumer. Every argument
is either a tuple (start, stop, step). x_slice operates on
image width, y_slice on its height and z_slice on the incoming
images, i.e. it creates the third time dimension.

Note: the start index is included in the data and the stop index
is excluded.

	
concert.coroutines.filters.flat_correct(flat, consumer, dark=None)

	Flat correcting corounte, which takes a flat field, a dark field (if
given), calculates a flat corrected radiograph and forwards it to
consumer.

	
concert.coroutines.filters.queue(consumer)

	Store the incoming data in a queue and dispatch in a separate
thread which prevents the stalling on the “main” data stream.

	
concert.coroutines.filters.sinograms(num_radiographs, consumer, sinograms_volume=None)

	Convert num_radiographs into sinograms and send them to consumer.
The sinograms are sent every time a new radiograph arrives. If there
is more than num_radiographs radiographs, the sinograms are rewritten
in a ring-buffer fashion. If sinograms_volume is given, it must be a 3D
array and it is used to store the sinograms.

	
concert.coroutines.filters.stall(consumer, per_shot=10, flush_at=None)

	Send items once enough is collected. Collect per_shot items and
send them to consumer. The incoming data might represent a collection
of some kind. If the last item is supposed to be sent regardless the current
number of collected items, use flush_at by which you specify the collection
size and every time the current item counter % flush_at == 0 the item
is sent.

Optimization

Optimization is a procedure to iteratively find the best possible match
to

\[y = f(x).\]

This module provides execution routines and algorithms for optimization.

	
concert.optimization.bfgs(function, x_0, **kwargs)

	Broyde-Fletcher-Goldfarb-Shanno (BFGS) algorithm from
scipy.optimize.fmin_bfgs() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_bfgs.html#scipy.optimize.fmin_bfgs].
Please refer to the scipy function for additional arguments information.

	
concert.optimization.down_hill(function, x_0, **kwargs)

	Downhill simplex algorithm from scipy.optimize.fmin() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html#scipy.optimize.fmin].
Please refer to the scipy function for additional arguments information.

	
concert.optimization.halver(function, x_0, initial_step=None, epsilon=None, max_iterations=100)

	Halving the interval, evaluate function based on param. Use
initial_step, epsilon precision and max_iterations.

	
concert.optimization.least_squares(function, x_0, **kwargs)

	Least squares algorithm from scipy.optimize.leastsq() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq].
Please refer to the scipy function for additional arguments information.

	
concert.optimization.nonlinear_conjugate(function, x_0, **kwargs)

	Nonlinear conjugate gradient algorithm from
scipy.optimize.fmin_cg() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cg.html#scipy.optimize.fmin_cg].
Please refer to the scipy function for additional arguments information.

	
concert.optimization.optimize(*args, **kwargs)

	Optimize y = function (x), where x_0 is the initial guess.
algorithm is the optimization algorithm to be used:

algorithm(x_0, *alg_args, **alg_kwargs)

consumer receives all the (x, y) values as they are obtained.

	
concert.optimization.optimize_parameter(parameter, feedback, x_0, algorithm, alg_args=(), alg_kwargs=None, consumer=None)

	Optimize parameter and use the feedback (a callable)
as a result. Other arguments are the same as by optimize().
The function to be optimized is determined as follows:

parameter.set(x)
y = feedback()

consumer is the same as by optimize().

	
concert.optimization.powell(function, x_0, **kwargs)

	Powell’s algorithm from scipy.optimize.fmin_powell() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_powell.html#scipy.optimize.fmin_powell].
Please refer to the scipy function for additional arguments information.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Concert 0.8.0 documentation

 	API reference

Extensions

Concert integrates third-party software in the ext package. Because the
dependencies of these modules are not listed as Concert dependencies, you have
to make sure, that the appropriate libraries and modules are installed.

UFO Processing

Base objects

	
class concert.ext.ufo.PluginManager

	Plugin manager that initializes new tasks.

	
get_task(name, **kwargs)

	Create a new task from plugin name and initialize with kwargs.

	
class concert.ext.ufo.InjectProcess(graph, get_output=False)

	Process to inject NumPy data into a UFO processing graph.

InjectProcess can also be used as a context manager, in which
case it will call start() on entering the manager
and wait() on exiting it.

graph must either be a Ufo.TaskGraph or a Ufo.TaskNode object. If it is
a graph the input tasks will be connected to the roots, otherwise a new
graph will be created.

	
insert(array, node=None, index=0)

	Insert array into the node‘s index input.

Note

array must be a NumPy compatible array.

	
start()

	Run the processing in a new thread.

Use push() to insert data into the processing chaing and
wait() to wait until processing has finished.

	
wait()

	Wait until processing has finished.

Coroutines

	
class concert.ext.ufo.Backproject(axis_pos=None)

	Bases: concert.ext.ufo.InjectProcess

Coroutine to reconstruct slices from sinograms using filtered
backprojection.

axis_pos specifies the center of rotation in pixels within the sinogram.
If not specified, the center of the image is assumed to be the center of
rotation.

Viewers

Opening images in external programs.

	
class concert.ext.viewers.PyplotImageViewer(imshow_kwargs=None, colorbar=True, title='')

	Dynamic image viewer using matplotlib.

	
show(item, force=False)

	show item into the redrawing queue. The item is truly inserted
only if the queue is empty in order to guarantee that the newest
image is drawn or if the force is True.

	
class concert.ext.viewers.PyplotViewer(style='o', plot_kwargs=None, autoscale=True, title='')

	Dynamic plot viewer using matplotlib.

	
style

	One of matplotlib’s linestyle format strings

	
plt_kwargs

	Keyword arguments accepted by matplotlib’s plot()

	
autoscale

	If True, the axes limits will be expanded as needed by the new data,
otherwise the user needs to rescale the axes

	
clear()

	Clear the plotted data.

	
plot(x, y=None, force=False)

	Plot x and y, if y is None and x is a scalar the real y is
given by x and x is the current iteration of the plotting command,
if x is an iterable then it is interpreted as y data array and x is
a span [0, len(x)]. If both x and y are given, they are plotted as
they are. If force is True the plotting is guaranteed, otherwise it
might be skipped for the sake of plotting speed.

Note: if x is not given, the iteration starts at 0.

	
class concert.ext.viewers.PyplotViewerBase(view_function, blit=False)

	A base class for data viewer which sends commands to a matplotlib updater
which runs in a separate process.

	
view_function

	The function which updates the figure based on the changed data. Its
nomenclature has to be:

foo(data, force=False)

Where force determines whether the redrawing must be done or not. If
it is False, the redrawing takes place if the data queue contains only
the current data item. This prevents the actual drawer from being
overwhelmed by the amount of incoming data.

	
blit

	True if faster redrawing based on canvas blitting should be used.

	
pause()

	Pause, no images are dispayed but image commands work.

	
resume()

	Resume the viewer.

	
terminate()

	Close all communication and terminate child process.

	
concert.ext.viewers.imagej(*args, **kwargs)

	Open image in ImageJ found by path. writer specifies
the written image file type.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Concert 0.8.0 documentation

Changelog

Here you can see the full list of changes between each Concert release.

Version 0.8

Released on April 16th 2014.

Improvements

	concert log can now --follow the current operation.

	Soft limits and parameters can be locked both temporarily and permanently.

	Added new @quantity decorator for simple cases.

	The concert` binary can now be started without a session.

	Added cross-correlation tomographic axis finding.

	Added frame consumer to align_rotation_axis.

	Simplify file camera and allow resetting it

	Added ports property to the base IO device.

	Added Photodiode base device class.

	Added Fiber-Lite halogen lightsource.

	Added LEDs connected within the wago.

	Added stream coroutine to cameras.

	Added EdmundOptics photodiode.

	Added PCO.4000 camera.

	Added Wago input/output device.

API breaks

	Raise CameraError instead of ValueError

	Change Pco’s freerun to stream

Fixes

	Fix FileCamera pixel units in grab

	Import GLib.GError correctly

	Make recording context exception-safe

	Fix quantity problem with recent Pint versions

	#200, #203, #206, #209, #228, #230, #245

Version 0.7

Released on February 17th 2014.

Improvements

	Added beam finding and centering

	threaded decorator uses daemonic threads

	Added downsize, queue, stall, PickSlice to coroutine
filters

	Added reconstruction of the whole volume using UFO Framework

	Documentation was restructured significantly (split to usage/API)

	Added tomography helper functions

	Crio motor support continuous rotation

	PyplotViewer can be configured for faster drawing capabilities
using blit

	Added dummy Scales

	Tests cover all devices (at least try to instantiate them)

	Added pixel units, q.pixel (shorthand q.px)

	Changed prompt color to terminal default

	Added Positioner device

	Added Detector device

API Breaks

	Finite state machine was reworked significantly

	Motors were cleaned from mixins and hard-limit was incorporated into them

	recording() context was added to cameras

	backprojector coroutine filter was significantly simplified

	average_images arguments changed

	Experiments were completely restructured based on usage of Acquisition

	PyplotViewer plotting signature changed

	Remove leftover beam line specific shutters

	Many getters/setters were replaced by properties, especially in the
concert.ext.viewers module

	Appropriate get_ set_ functions were replaced by non-prefixed ones

Fixes

	#118, #128, #132, #133, #139, #148, #149, #150, #157, #159, #165, #169,
#173, #174, #175, #176, #178, #179, #181, #184, #189, #192

Version 0.6

Released on December 10th 2013.

Improvements

	Concert now comes with an experimental gevent backend that will eventually
replace the thread pool executor based asynchronous infrastructure.

	Each device can now have an explicit State object and @transition
applied to function which will change the state depending on the successful
outcome of the decorated function.

	1D data plotting is implemented as PyplotCurveViewer.

	The concert binary now knows the cp command to make a copy of a
session. The start command can receive a log level and with the
--non-interactive option run a session as a script.

	Devices and parameters can store their current parameter values with stash
and restore them later with restore.

	Changed the IPython prompt.

	Added the NewPort 74000 Monochromator.

	Provide a require function that will scream when the required Concert
version is not installed.

API breaks

	Motor is renamed to LinearMotor for all devices.

	Parameter objects are now declared at class-level instead of at run-time
within the class constructor.

	concert.storage.create_folder renamed to
concert.storage.create_directory

	concert.ext.viewers.PyplotViewer substituted by 1D and 2D viewers
concert.ext.viewers.PyplotCurveViewer and
concert.ext.viewers.PyplotImageViewer

	To wait on a Future you have to call .join instead of .wait.

	Coroutine functions and decorators moved to concert.coroutines[.base],
asynchronous functions and decorators moved to concert.async.

	Removed is_async

	Configuration moved to concert.config

	Method names of concert.ext.ufo.InjectProcess changed.

Fixes

	#168, #166, #152, #147, #158, #150, #157, #95, #138

	Many more concerning the camera implementation.

Version 0.5

Released on October 31st 2013.

Improvements

	Python 3 is supported and can be tested with tox.

	Most imports are delayed in the concert binary to reduce startup time.

	We do not depend on Logbook anymore but use Python’s logging module.

	Experiments can now be modelled with the concert.experiments module.

	concert.ext.viewers.PyplotViewer can be used to show 2D image data.

	Spyder command plugin is now available. That means if you have Spyder
installed you can control Concert from an IDE instead of from IPython.

	Tests were restructured for easier access.

API breaks

	concert.connections package moved to concert.networking module

	Renamed concert.helpers.multicast to broadcast to reflect its true
purpose.

	Session helpers such as dstate and ddoc have been moved to
concert.session.utils.

	Frames grabbed with the libuca devices will return a copy instead of the same
buffer.

Fixes:

	#106, #113 and many more which did not deserve an issue number.

Version 0.4

Released on October 7th 2013.

Improvements

	Tests and rotation axis alignment is faster now.

	Soft limits were added to the parameter (accessible with .lower and
.upper)

	Cleaner inet connection implemention.

	Base pumps and scales were added.

	Concert no longer depends on testfixtures for running tests.

	Started work on flexible data processing schemes for light computation based
on a coroutine approach.

	Integrated tifffile.py in case libtiff is not available.

	concert mv renames sessions.

	@threaded decorator can be used to run a function in its own thread.

	Scanner parameters can now be set in the constructor.

	Parameters can now be locked independently of the parent device. However, if
done so, no one else can lock the device.

	Add code_of function to show the source of a function.

	Introduced coroutine based data processing facility.

API breaks

	Renamed to_steps to to_device and do not drop units

	camera.grab returns None if no data is available

	uca.Camera exposes the wrapped GObject camera as an attribute called
uca instead of camera.

	minimum, maximum and intervals are now longer implemented as
Parameter objects of Scanner but simple attributes.

	asynchronous module content has been moved to helpers

	Removed Scanner class in favor of scan function.

Fixes:

	Integration with all IPython releases works again.

	runtests.py returns 0 on success.

	#19, #55, #71, #78, #79

Version 0.3

Released on August 19th 2013.

Note: This release breaks Python 2.6 compatibility!

	Calibration classes moved to concert.devices.calibration

	Remove concert.processes.focus and reorganize concert.optimization
package, the focusing can be implemented by Maximizer with a proper feedback.

	Add --repo parameter to the fetch command. With this flag, session
files version controlled with Git can be imported.

	Use pint instead of quantities. pint is faster for smaller Numpy arrays,
stricter and does not depend on Numpy.

	Things can now run serialized if concert.asynchronous.DISABLE is set to
True.

	Restructured tests into separate directories.

	Fix PDF generation of the docs.

	Fix problem with IPython version >= 0.10.

Version 0.2

Released on July 14th 2013.

	Move third-party code to concert.ext. For example get_tomo_scan_result
must be imported from concert.ext.nexus.

	Adds concert fetch to pull session files from remote locations.

	Code cleanup

Version 0.1.1

Bug fix release, released on May 25th 2013

	Fixes Python 3 support.

	Monochromator fix.

Version 0.1

First public release.

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Concert 0.8.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 concert	

 	
 	
 concert.async	

 	
 	
 concert.config	

 	
 	
 concert.coroutines.base	

 	
 	
 concert.coroutines.filters	

 	
 	
 concert.coroutines.sinks	

 	
 	
 concert.ext.viewers	

 	
 	
 concert.helpers	

 	
 	
 concert.optimization	

 	
 	
 concert.session.utils	

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Concert 0.8.0 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	
 --follow

 	

 	concert-log command line option

 	
 --force

 	

 	concert-fetch command line option

 	concert-init command line option

 	
 --imports

 	

 	concert-init command line option

 	
 --logfile=<filename>

 	

 	concert-start command line option

 	

 	
 --loglevel={debug, info, warning, error, critical}

 	

 	concert-start command line option

 	
 --logto={stderr, file}

 	

 	concert-start command line option

 	
 --non-interactive

 	

 	concert-start command line option

 	
 --repo

 	

 	concert-fetch command line option

A

 	

 	absorptivity() (in module concert.coroutines.filters)

 	AccessorNotImplementedError (class in concert.base)

 	acquire() (concert.experiments.base.Experiment method)

 	

 	(concert.experiments.imaging.Experiment method)

 	Acquisition (class in concert.experiments.base)

 	acquisitions (Experiment attribute)

 	align_rotation_axis() (in module concert.processes)

 	

 	ascan() (in module concert.processes)

 	async() (in module concert.async)

 	autoscale (concert.ext.viewers.PyplotViewer attribute)

 	average_images() (in module concert.coroutines.filters)

 	Axis (class in concert.devices.positioners.base)

B

 	

 	back() (concert.devices.positioners.base.Positioner method)

 	Backproject (class in concert.ext.ufo)

 	backproject() (in module concert.coroutines.filters)

 	bfgs() (in module concert.optimization)

 	

 	blit (concert.ext.viewers.PyplotViewerBase attribute)

 	broadcast() (in module concert.coroutines.base)

 	Bunch (class in concert.helpers)

C

 	

 	Camera (class in concert.devices.cameras.base)

 	center_to_beam() (in module concert.processes)

 	clear() (concert.ext.viewers.PyplotViewer method)

 	close() (concert.devices.shutters.base.Shutter method)

 	code_of() (in module concert.session.utils)

 	Command (class in concert.helpers)

 	
 concert-fetch command line option

 	

 	--force

 	--repo

 	
 concert-init command line option

 	

 	--force

 	--imports

 	
 concert-log command line option

 	

 	--follow

 	
 concert-start command line option

 	

 	--logfile=<filename>

 	--loglevel={debug, info, warning, error, critical}

 	--logto={stderr, file}

 	--non-interactive

 	concert.async (module)

 	concert.config (module)

 	concert.coroutines.base (module)

 	

 	concert.coroutines.filters (module)

 	concert.coroutines.sinks (module)

 	concert.ext.viewers (module)

 	concert.helpers (module)

 	concert.helpers.dispatcher (built-in variable)

 	concert.optimization (module)

 	concert.session.utils (module)

 	Connection (class in concert.networking.aerotech)

 	consumer_callers (Acquisition attribute)

 	ContinuousLinearMotor (class in concert.devices.motors.base)

 	ContinuousRotationMotor (class in concert.devices.motors.base)

 	coroutine() (in module concert.coroutines.base)

 	current (StorageRing attribute)

D

 	

 	ddoc() (in module concert.session.utils)

 	Device (class in concert.devices.base)

 	directory (concert.experiments.base.Experiment attribute)

 	directory_prefix (Experiment attribute)

 	DISABLE_ASYNC (in module concert.config)

 	DISABLE_GEVENT (in module concert.config)

 	Dispatcher (class in concert.async)

 	

 	down() (concert.devices.positioners.base.Positioner method)

 	down_hill() (in module concert.optimization)

 	downsize() (in module concert.coroutines.filters)

 	drift_to_beam() (in module concert.processes)

 	dscan() (in module concert.processes)

 	dstate() (in module concert.session.utils)

E

 	

 	energy (Monochromator attribute)

 	

 	(StorageRing attribute)

 	execute() (concert.networking.base.SocketConnection method)

 	

 	Experiment (class in concert.experiments.base)

 	

 	(class in concert.experiments.imaging)

F

 	

 	find_beam() (in module concert.processes)

 	flat_correct() (in module concert.coroutines.filters)

 	focus() (in module concert.processes)

 	

 	forward() (concert.devices.positioners.base.Positioner method)

 	frames() (in module concert.experiments.imaging)

G

 	

 	generator_caller (Acquisition attribute)

 	get_acquisition() (concert.experiments.base.Experiment method)

 	get_default_table() (in module concert.session.utils)

 	get_position() (concert.devices.positioners.base.Axis method)

 	

 	get_tango_device() (in module concert.networking.base)

 	get_task() (concert.ext.ufo.PluginManager method)

 	grab() (concert.devices.cameras.base.Camera method)

H

 	

 	halver() (in module concert.optimization)

I

 	

 	imagej() (in module concert.ext.viewers)

 	inject() (in module concert.coroutines.base)

 	InjectProcess (class in concert.ext.ufo)

 	

 	insert() (concert.ext.ufo.InjectProcess method)

 	install_parameters() (concert.base.Parameterizable method)

 	IO (class in concert.devices.io.base)

K

 	

 	KillException

L

 	

 	least_squares() (in module concert.optimization)

 	left() (concert.devices.positioners.base.Positioner method)

 	lifetime (StorageRing attribute)

 	LightSource (class in concert.devices.lightsources.base)

 	LimitError (class in concert.base)

 	LinearMotor (class in concert.devices.motors.base)

 	

 	lock() (concert.base.Parameterizable method)

 	

 	(concert.base.ParameterValue method)

 	lock_limits() (concert.base.QuantityValue method)

 	locked (concert.base.ParameterValue attribute)

 	log (Experiment attribute)

 	log_file_name (Experiment attribute)

M

 	

 	memoize() (in module concert.helpers)

 	Monochromator (class in concert.devices.monochromators.base)

 	

 	move() (concert.devices.positioners.base.Positioner method)

 	

 	(concert.devices.positioners.imaging.Positioner method)

N

 	

 	nonlinear_conjugate() (in module concert.optimization)

 	

 	null() (in module concert.coroutines.sinks)

O

 	

 	open() (concert.devices.shutters.base.Shutter method)

 	optimize() (in module concert.optimization)

 	

 	optimize_parameter() (in module concert.optimization)

P

 	

 	Parameter (class in concert.base)

 	ParameterError (class in concert.base)

 	Parameterizable (class in concert.base)

 	ParameterValue (class in concert.base)

 	pause() (concert.ext.viewers.PyplotViewerBase method)

 	pdoc() (in module concert.session.utils)

 	PhotoDiode (class in concert.devices.photodiodes.base)

 	PickSlice (class in concert.coroutines.filters)

 	plot() (concert.ext.viewers.PyplotViewer method)

 	plt_kwargs (concert.ext.viewers.PyplotViewer attribute)

 	

 	PluginManager (class in concert.ext.ufo)

 	ports (concert.devices.io.base.IO attribute)

 	position (LinearMotor attribute)

 	

 	(RotationMotor attribute)

 	Positioner (class in concert.devices.positioners.base)

 	

 	(class in concert.devices.positioners.imaging)

 	powell() (in module concert.optimization)

 	Pump (class in concert.devices.pumps.base)

 	PyplotImageViewer (class in concert.ext.viewers)

 	PyplotViewer (class in concert.ext.viewers)

 	PyplotViewerBase (class in concert.ext.viewers)

Q

 	

 	Quantity (class in concert.base)

 	QuantityValue (class in concert.base)

 	

 	queue() (in module concert.coroutines.filters)

R

 	

 	read_port() (concert.devices.io.base.IO method)

 	ReadAccessError (class in concert.base)

 	recording() (concert.devices.cameras.base.Camera method)

 	recv() (concert.networking.aerotech.Connection method)

 	

 	(concert.networking.base.SocketConnection method)

 	restore() (concert.base.Parameterizable method)

 	

 	(concert.base.ParameterValue method)

 	Result (class in concert.coroutines.sinks)

 	

 	resume() (concert.ext.viewers.PyplotViewerBase method)

 	right() (concert.devices.positioners.base.Positioner method)

 	rotate() (concert.devices.positioners.base.Positioner method)

 	RotationMotor (class in concert.devices.motors.base)

 	run() (concert.experiments.base.Experiment method)

 	

 	(concert.helpers.Command method)

S

 	

 	Scales (class in concert.devices.scales.base)

 	scan() (in module concert.processes)

 	scan_param_feedback() (in module concert.processes)

 	send() (concert.async.Dispatcher method)

 	

 	(concert.networking.base.SocketConnection method)

 	set_position() (concert.devices.positioners.base.Axis method)

 	show() (concert.ext.viewers.PyplotImageViewer method)

 	Shutter (class in concert.devices.shutters.base)

 	sinograms() (in module concert.coroutines.filters)

 	SocketConnection (class in concert.networking.base)

 	stall() (in module concert.coroutines.filters)

 	start() (concert.devices.pumps.base.Pump method)

 	

 	(concert.ext.ufo.InjectProcess method)

 	

 	start_recording() (concert.devices.cameras.base.Camera method)

 	stash() (concert.base.Parameterizable method)

 	

 	(concert.base.ParameterValue method)

 	State (class in concert.base)

 	stop() (concert.devices.pumps.base.Pump method)

 	stop_recording() (concert.devices.cameras.base.Camera method)

 	StorageRing (class in concert.devices.storagerings.base)

 	stream() (concert.devices.cameras.base.Camera method)

 	style (concert.ext.viewers.PyplotViewer attribute)

 	subscribe() (concert.async.Dispatcher method)

 	swap() (concert.experiments.base.Experiment method)

T

 	

 	TarableScales (class in concert.devices.scales.base)

 	tare() (concert.devices.scales.base.TarableScales method)

 	terminate() (concert.ext.viewers.PyplotViewerBase method)

 	threaded() (in module concert.async)

 	tomo_angular_step() (in module concert.experiments.imaging)

 	

 	tomo_max_speed() (in module concert.experiments.imaging)

 	tomo_projections_number() (in module concert.experiments.imaging)

 	transition() (in module concert.base)

 	trigger() (concert.devices.cameras.base.Camera method)

U

 	

 	UnitError (class in concert.base)

 	unlock() (concert.base.Parameterizable method)

 	

 	(concert.base.ParameterValue method)

 	unlock_limits() (concert.base.QuantityValue method)

 	

 	unsubscribe() (concert.async.Dispatcher method)

 	up() (concert.devices.positioners.base.Positioner method)

V

 	

 	velocity (ContinuousLinearMotor attribute)

 	

 	(ContinuousRotationMotor attribute)

 	

 	view_function (concert.ext.viewers.PyplotViewerBase attribute)

W

 	

 	wait() (concert.ext.ufo.InjectProcess method)

 	

 	(in module concert.async)

 	wavelength (Monochromator attribute)

 	write_images() (in module concert.coroutines.sinks)

 	

 	write_port() (concert.devices.io.base.IO method)

 	WriteAccessError (class in concert.base)

 Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Concert 0.8.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Matthias Vogelgesang, Tomas Farago.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

